2020春人教版七年级数学下册 第9章 全单元教学设计
- 格式:doc
- 大小:292.00 KB
- 文档页数:18
最新RJ人教版初中七年级数学下册第二学期春教学设计教案第九章不等式与不等式组*第2课时一元一次不等式组的应用【教学目标】1.通过由学生动手操作:用各种不同长度的木棒去拼三角形,归纳出能拼出三角形的各边长之间的关系和不能拼成三角形的三边的特征,•目的是归纳出同时符合几不同条件的不等式的公共范围,即不等式组的解集.2.通过确定不等式组的解集与确定方程组的解集进行比较,•抽象出这二者中的异同,由此理解不等式组的公共解集.3.通过由一元一次不等式,一元一次不等式的解集、•解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组这些概念,•发展学生的类比推理能力.【教学重点与难点】1、难点:一元一次不等式组解集的理解2、重点:一元一次不等式组的解集和解法。
【教学过程】一、创设情境,导入新课在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:•老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?•俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,•所以老师相信大家一定有办法的.在上述已知条件中只有一个等量关系式:小王年龄的2倍+弟弟年龄的5倍=97,而小王及弟弟的年龄是未知的,他们年龄之间的等量关系也没有说出,在一个等式中有两个未知数是无法确定未知数的值,还必须再找出另一个关系式,还有已知条件即是哥哥的年龄为20岁,如何利用这个已知条件呢?只有利用一个隐含的条件哥哥、小王、弟弟三者的年龄是逐渐减小的,即是20>小王的年龄>弟弟的年龄,若设小王有x岁,弟弟为y岁,则有y<x<20,这是一个不等量,在等式中可知x=9752y-,代入不等式中得y<9752y-<20,怎么样?得到一个不等式组了!从而得出1152<y<1367,而x、y为正整数,故y=13,x=16,•也就是说不等式组也是解决实际问题的一种工具.•所以学习解不等式组是为了更好地解决实际问题.二、师生互动,课堂探究(一)提出问题,引发讨论当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,•其公共解是否一定为实际问题的解呢?请举例说明.例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15•分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?分析:甲以5km/时的速度前进,2小时后,甲前进了10km,此时,乙再开始骑自行车追赶甲,但乙追上甲的时间不早于1小时即是不能比1小时少,故乙追上甲的最少时间应多于1小时,而这段时间甲仍在前进,乙追上甲时所走的路程不止他1小时的路程,•故有不等式:v2·1≤(2+1)×5,由此得v2≤15;又因为乙追上甲的时间不晚于1小时15分(114小时),也就是乙追上甲的时间不能超过114小时,即比114小时要少,•实际上乙追上甲所走的路程要比他在114小时所走的路程少,在乙开始追甲时,•甲也在以原来的速度继续前进,实际上甲走的总时间应比(2+114)小时少,故又有不等式:v2·114≥(2+114)×5即54v2≥134×5,故v2≥13.同一个人的速度,既要比13大又要比15小,故它的速度就是不等式组221(21)5111(21)5 44v v ≤+⨯⎧⎪⎨≥+⨯⎪⎩的公共解集:13≤v2≤15.由于速度是一个正数,既可以是整数,也可以是分数,因此,乙的速度就是根据题意所列不等式组的公共解集.但由此一例,不能代表全体,实际上也有方程的解不全是不等式组的解的时候.(二)导入知识,解释疑难1.教材内容讲解如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为1523<x<1623,但x表示的是生产的产品件数,•不能为分数,故需取整,即x=16.又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?分析:根据若每个笼里放4只鸡,则有1•只鸡无笼可放这句话可得“鸡的数量为4×笼的数量+1”,若每个笼里放5只,则有一笼无鸡可放,•是否有鸡可放的笼里都放满了呢?这就有两种可能,可能最后一笼没有5只,也可能最后一笼恰好也有5只,因此可知“4×笼的数量+1”小于或等于“5×(笼的数量-1)”,但“4•×笼的数量+1”肯定比“5×(笼的数量-2)”要多,于是:设有x只鸡,y个笼,根据题意415(2)5(1)y xy x y+=⎧⎨-<≤-⎩∴5(y-2)<4y+1≤5(y-1)解此不等式组得:y≥6,x<11 故6≤y<11此不等式组的解中包括整数和分数,但y表示鸡的笼子不可能为分数,故y只能取6、7、8、9、10这五个数.而题中问至少有多少只鸡,多少个笼子,故y只能为6,允的只数为4×6+1=25只2.探究活动把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?分析:不妨假设每根火柴长为1,则16根火柴长为16,围成长方形,•则相邻两边的和为8,如果一边长为x,另一边长则为8-x,且8-x 必须大于x.又x 必须为大于1•的数最小等于1,于是得不等式组18x x x≥⎧⎨->⎩,解不等式组得1≤x<4,因为x 为正整数,所以x 所取的值为1,2,3.由此只要分别取1根火柴,2根火柴,3根火柴作相邻两边中较短的一条边,对应的邻边也分别取7根火柴,6根火柴,5根火柴,就能围成所有不同形状的长方形,•这样的长方形一共有3个.(三)归纳总结,知识回顾应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,•根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(•与列方程组解应用题进行比较)三、 作业设计(一)双基练习1.已知方程组2420x ky x y +=⎧⎨-=⎩有正整数解,则k 的取值范围是_________.2.若不等式组2113x a x <⎧⎪-⎨>⎪⎩无解,求a 的取值范围. 3.当2(m-3)< 103m -时,求关于x 的不等式(5)4m x ->x-m 的解集. 4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?(二)创新提升5.某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,•在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.•设该商场准备了m 件礼品,有x 名顾客获赠,请回答下列问题:(1)用含x 的代数式表示m.(2)求出该次活动中获赠顾客人数及所准备的礼品数.(三)探究拓展6.乘某城市的一种出租汽车起价是10元(即行驶路程在5km 以内都需付10元车费),达成或超过5km 后,每增加1km,加价1.2元(不足1km 部分按1km 计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
第九章复习教案一、教学内容:不等式与不等式组二、教学目标1、知识与技能:能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
会解简单的一元一次不等式,并能在数轴上表示出解集。
会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
2、方法与过程:能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。
3、情感、态度与价值观:会运用数形结合、分类等数学思想方法解决问题,会“逆向”地思考问题,灵活的解答问题.三、教学重点:能熟练的解一元一次不等式与一元一次不等式组四、教学难点:能熟练的解一元一次不等式(组)并体会数形结合、分类讨论等数学思想。
五、教学过程(一)知识梳理1.知识结构图2.知识点回顾(1)、不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”.(2)、不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.(3)、不等式的基本性质A、不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a>b,则a+c>b+c,a-c>b-cB、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a>b,并且c>0,那么则ac>bc(或a/c>b/c)C、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a>b,并且c<0,那么则ac<bc(或a/c<b/c)说明:任意两个实数a、b的大小关系:①a-b>O⇔a>b;②a-b=O⇔a=b;③a-b<O⇔a<b.(4) 、一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.注:一元一次不等式的一般形式是ax+b>O或ax+b<O(a≠O,a,b为已知数).(5)、解一元一次不等式的一般步骤解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.(6).一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.(7).一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(8). 不等式组解集的确定方法,可以归纳为以下四种类型(设a>b)x b <(同小取小)x ax b <⎧⎨>⎩ bab x a <<(大小交叉取中间)x ax b >⎧⎨<⎩ba无解(大小分离解为空)(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 3.课堂练习(一)解:去分母,得:4(2x-1)≥12(5/4x-5)去括号,得:8x-4≥15x-60 移项,得: 8x-15x≥-60+4 合并同类项得:-7x≥-56 系数化为1,得:x≤8 2.解不等式组:解:解不等式①得:x ≤8解不等式②得:x ≥5把不等式①的解集和不等式②的解集在数轴上表示如下:2151.5,34.x x -≥-解不等式并把它的解集在数轴上表示出来33)4(2545312+≤+-≥-x x x x∴ 原不等式组的解集为:5≤x ≤83、求不等式(组)的特殊解: (1)求不等式 3x+1≥4x-5的正整数解解:移项,得:3x-4x≥-5-1 合并同类项,得:-x≥-6 系数化为1,得:x≤6所以不等式 的正整数解为:1、2、3、4、5、6(2)求不等式组 的整数解解:由不等式①得: x >2由不等式②得: x ≤4把不等式①的解集和不等式②的解集在数轴上表示如下:∴ 不等式组的解集为:2<x ≤4∴不等式组的整数解为:3、4.4.不等式(组)在实际生活中的应用当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属列不等式(组)来解决的问题,而不能列方程(组)来解.(1)我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干2151(2)32x x +>⎧⎪⎨+≤⎪⎩间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?解:设可能有x间住房安排学生住宿,则根据题意可得:8x>5x+12解这个不等式,得:x>4当x=5时,住宿的学生可能有37人,符合题意;当x=6时,住宿的学生可能有42人,符合题意;当x=7时,住宿的学生可能有47人,不符合题意.答:该校可能有5间或6间住房,当有5间住房时,住宿学生有37人;当有6间住房时,住宿学生有42人.(2)学校要到体育用品商场购买篮球和排球共100只.已知篮球、排球的单价分别为130元、100元。
课题: 9.5 多项式的因式分解(4)
教学目标:
1.进一步熟悉提公因式法、平方差公式、完全平方公式分解因式;
2.能根据不同题目的特点选择较合理的分解因式的方法;
3.知道因式分解的方法步骤以及因式分解最终结果的要求.
教学难点:知道因式分解的步骤和因式分解的结果的要求,能综合运用提公因式法,运用公式法分解因式
教学重点:能综合运用提公因式法、公式法分解因式.
教学方法:
教学过程:
一.【情景创设】
.【问题探究】问题1:探究活动
(1)师生共同回顾前面所学过的因式分解的方法.提取公因式法、运用公式法,并说明公因式的确定方法及公式的特征.
(2)整理知识结构图.
提公因式法:关键是确定公因式
因式分解平方差公式:
运用公式法a2-b2=(a+b)(a-b)
完全平方公式:
a2±2ab+b2=(a±b)2
说明:公式中a、b可以是具体的数,也可以是任意的单项式和多项式.
问题2例题讲解
例1 把下列各式分解因式.
(1)18a2-50;(2)2x2y-8xy+8y;
(3)a 2(x -y )-b 2(x -y ).
问题3例2 把下列各式分解因式.
(1)a 4-16; (2)81x 4-72x 2y 2+16y 4.
三【变式拓展】
问题4.把下列各式分解因式;
(1)(a 2+b 2)2-4a 2b 2;(2)(x 2-2x )2+2(x 2-2x )+1.
问题5利用因式分解计算: (1)
223.22
13.23.73.721⨯+⨯-⨯ (2)44×29-11×34
四.【总结提升】
通过本节课的学习,你有哪些收获?。
课题:第九章不等式与不等式组小结一、教材地位:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容,应用不等式的基本性质解一元一次不等式(组)是学生应该掌握的基本运算技能,为学生的进一步学习函数、方程和不等式的后续学习奠定基础。
二、学情分析:学生在七年级已经学习一元一次方程和二元一次方程组的基础上学习不等式与不等式组,本节主要引导学生对一元一次不等式(组)的解及其解法的小结,对学生在数学及其生活里不等式内容的进一步的总结。
以数学建模为主要思想,进一步地培养学生分析问题和解题能力。
三、教学目标:(一)知识与技能目标:1、巩固运用不等式的性质;2、会运用不等式的基本性质,解一元一次不等式(组),并会借助数轴确定不等式(组)的解集;3、会巧用解集确定字母系数。
(二)过程与方法目标:1、通过学生解不等式,暴露易犯的错误,针对共性解决问题;2、注重渗透知识形成中蕴涵的数学思想、方法和思维策略;(三)情感与态度目标:1、让学生领会数形结合、分类讨论等解题思想;2、感受数学与生活密切相关,提高学习数学的积极性;四、教学重点:一元一次不等式(组)的概念、性质及解一元一次不等式(组);五、教学难点:巧用解集确定字母系数,体验运用数形结合、分类讨论的思想方法,六、教学策略:本节课将采用“兵教兵”及多媒体演示等方式来突出重点,突破难点.设计典型例题,学生通过“兵教兵”的方式发现问题并展开探索交流.在学生把握基本内容的基础上,教师引导学生进一步提炼,构建知识体系,科学地进行小结与归纳.在此基础上,通过师生之间、生生之间的交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活。
七、教学准备:教师多媒体,学生学具准备。
教学过程一、小测比一比谁做得最快、最好1、解不等式 , 并把解集在数轴上表示出来;2、求不等式组 的整数解。
设计意图:1、根据学生新课的学习,对不等式与不等式组的计算掌握较好,所以通过小测的形式检测;让学生明白本章的重点之一(不等式与不等式组的计算)是否过关;2、通过“兵教兵”的形式,让之前没过关的学生全部通过;3、通过小老师的批改及“兵教兵”时发现的错误,再请他们小结计算过程的易错点。
最新RJ 人教版 初中七年级数学 下册第二学期春 教学设计 教案第九章 不等式与不等式组*第2课时 一元一次不等式组的应用会运用一元一次不等式组解决简单的实际问题.一、情境导入小明、小红和东东三人在公园玩跷跷板,当小明和小红坐在跷跷板的两端时,小明这一端着地.三人一起玩跷跷板时,小红与东东坐在一端,小明被跷起.已经知道小红和东东的体重分别为30kg 和32kg ,同学们,你们能算出小明的体重大约是多少吗?二、合作探究探究点:一元一次不等式组的应用【类型一】 分配问题某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒;如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒(用含x 的代数式表示)?(2)该敬老院至少有多少个老人?最多有多少个老人?解析:相等关系:每人分5盒,剩下38盒.不等关系:每人分6盒,则最后一个老人不足5盒,但至少分得1盒,即最后一个老人分得的盒数大于或等于1且小于5.解:(1)牛奶数量为(5x +38)盒;(2)方法一:根据题意可得1≤(5x +38)-6(x -1)<5,解得39<x ≤43.因为x 取整数,所以该敬老院至少有40个老人,最多有43个老人.方法二:根据题意得⎩⎪⎨⎪⎧6(x -1)+1≤5x +38,6(x -1)+5>5x +38,解得39<x ≤43.因为x 取整数,所以该敬老院至少有40个老人,最多有43个老人.方法总结:此类问题主要考查应用不等式组解决实际问题时要善于挖掘题中的隐含条件,如本题中“每人分6盒,则最后一个老人不足5盒,但至少1盒”的含义是最后一个老人分得的盒数大于或等于1且小于5.【类型二】 方案决策问题某地区发生严重旱情,为了保障人畜饮水安全,急需饮水设备12台.现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?解析:根据“购买的费用不超过40000元”“安装及运输费用不超过9200元”作为不等关系列不等式组,求其整数解即可.解:设购买甲种设备x 台,则购买乙种设备(12-x )台.购买设备的费用为4000x +3000(12-x ),安装及运输费用为600x +800(12-x ).根据题意得⎩⎪⎨⎪⎧4000x +3000(12-x )≤40000,600x +800(12-x )≤9200. 解得2≤x ≤4.由于x 取整数,所以x =2,3,4.故有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计列一元一次不等式组解应用题的步骤:①审:分析题目中的已知条件和未知条件之间的关系;②设:设未知数;③列:找出题中的两个不等关系,列出不等式组;④解:解不等式组,求出解集;⑤答:检验解集是否合理,是否符合实际情况,作答.本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列出不等式组,通过逐步引导,使学生明确直接的不等关系和一些隐含的不等关系.在教学过程中,可通过类比列一元一次方程组解决实际问题,让学生认识到列方程组与列不等式组的区别与联系。
9.6 因式分解(二)(3)【学习目标】掌握因式分解的一般步骤,灵活运用提公因式法和公式法正确的进行因式分解。
【预习研问】1.整理知识结构图 :提公因式法: 关键是确定公因式因式分解 运用公式法 平方差公式:a 2-b 2=(a +b)(a -b)完全平方公式:a 2±2ab +b 2=(a ±b)2 A 2.运用 公式、 公式,把一个多项式分解因式的方法叫做运用公式法。
A 3.分解因式的一般步骤是:先 ,再 ,进行多项式因式分解时,必须 .A 4.因式分解:(1)65.52-34.52 (2)1012-2×101×1+1 (3)482+48×24+122(4)5×552-5×452 (5)4a 4-100 (6)a 4-2a 2b 2+b 4个人或小组的预习未解决问题:【课内解问】A 1.请写出一个三项式,使它能先提公因式,再运用公式法来分解因式,你编的三项式是 ,分解因式的结果是 。
A 2.多项式 ①16x 5-x ② (x -1)2-4(x -1)+4 ③ (x +1)4-4x(x +1)2+4x2 ④-4x 2-1+4x 分解因式后,结果含有相同因式的是 ( ) A .①② B .③④ C .①④ D .②③B 3.若22(3)16x m x +-+是完全平方式,则m 的值是 ( )A.5- B.7 C.1- D.71-或B 4.辨析:分解因式 a 4-8a 2+16a 4-8a 2+16= (a 2-4)2= (a +2)2 (a -2)2= (a 2+2a +4) (a 2-2a +4)这种解法对吗?如果不对,指出错误原因。
B 5.用边长分别为a 、b 的正方形纸若干和边长为a 、b 的长方形纸片若干,你能拼成长方形吗?B 6.已知a +b=5,ab=3,求代数式a 3b +2a 2b 2+ab 3的值。
【课后答问】A 1.分解因式22224496b ab a y xy x -+-++得 ( )A .)23)(23(b a y x b a y x --++++B .)23)(23(b a y x b a y x ---++-C .)23)(23(b a y x b a y x +-+-++D .)23)(23(b a y x b a y x +---+-A 2.把下列多项式分解因式:(1) 36-25x 2 (2) 16a 2-9b 2 (3) 22)(4)(9b a b a --+(4)1682++x x (5)1102524++a aA 3.根据因式分解计算:2.37×52.5 +0.63×52.5—2×52.5A 4.先因式分解,再求值.x(a-x)(a-y)- y(x-a)(y-a) 其中a=3,x=2,y=4A 5.已知:4m+n=90,2m -3n=10,求(m+2n)2-(3m -n)2的值。
不等式及其解集【教材分析】本节课《不等式及其解集》是第九章第1小节的内容,是在学生学习了一元一次方程和二元一次方程组之后,学生接触到的又一种新的求解问题。
教材从实际问题引入,为学生理解不等关系做了铺垫,从而降低了学生理解上的难度。
书中给出了解集的定义,但还需要教师比较于方程的解加以引导和解释。
书中给出了较为简单的求解集的例题,应该给学生作以变式训练以加深学生的理解。
学生可以在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想方法,获得广泛的数学活动的经验。
【学情分析】学生在以前没有直接接触过有关不等式的问题,所以理解起来会有一定的难度,但学生接触过方程的解,这一点可以帮助学生理解较为抽象的不等式的解集的概念,学生可以通过交流、合作对于简单的不等式直接写出解集,并且学生对于数轴很熟悉,因此理解解集的几何意义不会有太大的难度。
【设计思路】教材从现实生活中的具体情境开始引入,比较性地阐述了不等关系的意义,在教学过程中我准备应用“由发现到理解,由合作、讨论突破难点,经探究、交流形成方法”的教学方法,始终发挥学生的主体作用,教师引导、帮助、点拨。
在教学中坚持“由简单问题得出方法,在理论上论证方法,再在问题中应用方法”的原则帮助学生克服难点。
【教学目标】1、知识与技能在“等式”的基础上理解“不等式”的概念,进而理解“解集”这一抽象的概念,并让学生掌握用数轴表示解集的方法。
经历探索不等式的解集的过程,理解解集的意义。
并且能够掌握、运用有关概念。
培养学生的比较、分析、归纳、概括能力。
2、过程与方法通过发现不等式的解集的意义的过程,向学生渗透比较性地看问题的思想,并且在解决问题的过程中,能进行有条理的思考,鼓励学生探索解决问题策略的多样性。
培养学生类比、归纳、概括等方面的能力。
发展学生把数学知识与实际问题联系的能力。
3、情感态度与价值观培养学生创新地思考问题的态度和细致地解决和求证问题的意识,产生学数学、爱数学的思想感情。
问题的产生过程与应用过程相辅相成,应注意学生对“解集”这一抽象概念的理解,关注学生的应用意识。
【教学重点】如何应用理解不等式和解集的概念,并解决较为简单的在数轴上表示解集的问题。
【教学难点】如何准确地理解不等式的解(集)与方程的解的相同点与不同点。
【解决教学重点及难点的措施】通过实际问题直观地引出定义,通过比较由旧知识得出新知识。
【教学方法】采用实践探索法、类比法。
【学法指导】注重与实际生活联系,注重与旧知识联系,注重数形结合。
【教学内容】不等式的性质的认识一、教学任务分析不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:(1)知识与技能目标:①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
二、教学过程分析本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题活动内容:利用班上同学站在不同的位置上比高矮。
请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。
问题1:怎样比才公平?活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论活动内容: 参照教材与多媒体课件提出问题:(1) 还记得等式的基本性质吗?请用字母表示它。
不等式有类似的性质吗?先猜一猜。
(2) 用等号或不等号完成下面的填空。
如果2 < 3;那么2 × 53 × 5; 2 × 3 × ;2 × (-1)3 × (- 1); 2 × (- 5) 3 × (- 5); 2 × (-) 3 × (-).(3) 验证你的结论,用字母表示你所发现的结论。
(4) 与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=,Θ,类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a >b ,∴a ±c >b ±c ;或∵a >b ,∴a ±c <b ±c 。
生2:对于等式的基本性质2,用字母可以表示为:c b c a c b c a b a ÷=÷⨯=⨯∴=,,Θ,其中0≠c 。
经过前面的探索,可类似地得到:如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。
字母表示如下:c b c a c b c a c b a ÷>÷⨯>⨯∴>>,,0,Θc b c a c b c a c b a ÷<÷⨯<⨯∴><,,0,Θ c b c a c b c a c b a ÷<÷⨯<⨯∴<>,,0,Θ c b c a c b c a c b a ÷>÷⨯>⨯∴<<,,0,Θ活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。
进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。
因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。
这时,学生对于由自己推导出性质应该感到非常兴奋。
第三环节:例题讲解及运用巩固 活动内容:1、在上一节课中,我们猜想,无论绳长l 取何值,圆的面积总大于正方形的面积,即16422l l >π。
你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?2、将下列不等式化成“a x >”或“a x <”的形式: (1)15->-x (2)32>-x练习设计:1、将下列不等式化成“a x >”或“a x <”的形式: (1)21>-x (2)65<-x (3)321≤x 2、已知y x >,下列不等式一定成立吗?(1)66-<-y x (2)y x 33< (3)y x 22-<- (4)1212+>+y x 3、小明做这样一题:已知2x>3x,求x 的范围。
结果小明两边同时除以x ,得到2>3。
你知道他错在哪?活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。
随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。
教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业 三、教学反思本节课通过复习等式的基本性质,类比得出不等式的基本性质。
教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。
在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。
在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。
一元一次不等式及其解法教学目标【知识与技能】1.掌握一元一次不等式的解法.【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式.【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心.【教学重点】一元一次不等式的解法.【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式.一、情境导入,初步认识问题1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________.当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________.(3)在乙店花费小,列不等式:__________________.问题2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果.二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1.注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向.三、运用新知,深化理解1.解下列不等式,并在数轴上表示解集.(1)256x-≤314x+;(2)10.5x--210.75x+≥18.2.当x取什么值时,3x+2的值不大于732x-的值.3.一次知识竞赛共30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了___道题.4.已知方程组2315x y ax y a-=⎧⎨+=-⎩,的解x与y的和为正数,求a的取值范围.5.已知关于x的不等式52x+-1>22ax+的解集是x<1/2,求a的值.6.已知不等式4x-3a>-1与不等式2(x-1)+3>5的解集相同,求a的值.7.当k是什么自然数时,方程2/3x-3k=5(x-k)+6的解是负数?8.当x取什么值时,代数式546x+的值不小于7/8-13x-的值,并求出此时x的最小值.【教学说明】题1可由两名学生在黑板上板书解题过程.其它学生在草稿纸上解答,教师巡视,适时指导有困难的学生;板书完后,教师给予点评,加深印象:题2~3,教师给予提示,帮助学生理解题意,寻找不等关系;题4~8,先让学生自主思考,交流,寻找解题思路.然后,师生共同完成解答.教师可根据实际情况选取部分习题来讲解.【答案】1.解:(1)去分母得:2(2x-5)≤3(3x+1),4x-10≤9x+3,-5x≤13,x≥-13/5.解集在数轴上表示为:(2)化简得:2(x-1)-4/3(2x+1)≥18,6(x-1)-4(2x+1)≥54,6x-6-8x-4≥54,-2x≥64,x≤-32.解集在数轴上表示为:2.解:由题意得:73322x x -+≤6x+4≤7x-3-x ≤-7.x ≥7 3.24 解析:设小明答对了x 道题,则4x-(30-x)≥90,5x ≥120,x ≥24.即小明至少答对了24道题.4.解:将两个方程相加得2x+2y=1-3a.∴x+y= 123a -. ∵x+y >0,∴123a ->0, ∴a <1/3.5.解:化简不等式得(1-a )x >-1.∵x <1/2,∴1-a <0.∴x <11a -- ∴11a--=1/2,∴a=3. 6.解:解不等式4x-3a >-1得,4x >3a-1,x >314a -; 解不等式2(x-1)+3>5得,2x-2+3>5,2x >4,x >2; 由于上述两个不等式的解集相同,∴314a -=2,∴a=3. 7.解:解方程得x=61813k -<0, 6k-18<0,k <3,故自然数可取k=2,1,0.8. 解:依题意:546x +≥78-13x -, 解得x ≥-1/4,即当x ≥-1/4时,代数式546x +的值不小于78-13x -的值,此时x 的最小值为-14.四、师生互动,课堂小结1.解一元一次不等式的一般步骤与解一元一次方程相同,只是在系数化为1时,若遇到运用不等式性质3,一定要改变不等号方向.2.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.课后作业1.完成练习册中本课时的练习.教学反思本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.一元一次不等式组及其解法教学目标【知识与技能】1.了解一元一次不等式组的概念.2.理解一元一次不等式组的解集,能求一元一次不等式组的解集.3.会解一元一次不等式组.【过程与方法】通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则.【情感态度】运用数轴确定不等式组的解集是行之有效的方法.这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣.【教学重点】一元一次不等式组的解法.【教学难点】确定一元一次不等式组的解集.教学过程一、情境导入,初步认识问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c 的长为xcm,则x<____,①x>____,②合起来,组成一个__________.由①解得_____________,由②解得_____________.在数轴上表示就是________________.容易看出:x的取值范围是____________________.这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框.问题2由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法.【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论.二、思考探究,获取新知思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?【归纳结论】1.定义:(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组.(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集.(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组.2.一元一次不等式组的解法:(1)求出每个一元一次不等式的解集.(2)求出这些解集的公共部分,便得到一元一次不等式组的解集.三、运用新知,深化理解并在数轴上表示解集.2.如果不等式组无解,则m的取值范围是()A.m<2B.m>2C.m≥2D.不能确定3.已知方程组的解是一对正数.(1)求a的范围;(2)化简|3a-1|+|a-2|.4.关于x的不等式组;只有4个整数解,则a的取值范围是()5.已知不等式组(1)当k=1/2时,不等式组的解集是;当k=3时,不等式组的解集;当k=-2时,不等式组的解集为.(2)由(1)知,不等式组的解集随数k值的变化而变化,当k为任意实数时,不等式组的解集.【教学说明】题1~3都可让学生自主探究,教师巡视指导;题4可先让学生思考,教师利用数轴帮助其答疑解惑,体验数形结合的思想妙用!题5(1)可全班一起解答,在(1)的基础上,分类讨论(2)的结论.【答案】1.解:(1)-6<x≤2; (2)3/2<x≤2.(3)-2≤x<1.在数轴上表示为:(4)-3≤x<5,(5)-3<x<5/3.2.C(2)由(1)可得:3a-1>0,a-2<0,故原式=3a-1-(a-2)=2a+1.4.C5.(1)-1<x<1/2;无解;-1<x<1;(2)当k≤0时,不等式组的解集为-1<x<1;当0<k<2时,不等式组的解集为-1<x<1-k;当k≥2时,不等式组无解.四、师生互动,课堂小结1.一元一次不等式组及其解集的定义;2.一般来说,由两个一元一次不等式组成的不等式组的解集不外乎以下四种情况:设a<b,则也可以用下面的口诀记忆:同大取大,同小取小,大小小大取中间,大大小小无解集[注释:每句前一个大(或小)表示大于(或小于),后一个大(或小)表示较大的数(或较小的数).]课后作业1.完成练习册中本课时的练习.教学反思本课重点是会解一元一次不等式组,并会利用数轴表示出解集,在教学过程中要求学生在解不等式组时,一定要通过画数轴,求出不等式的解集,从而建立数形结合的数学思想,提高学生动手操作的数学能力,激发学生学习数学的兴趣.。