建平中学自主招生数学真题附详解
- 格式:doc
- 大小:277.82 KB
- 文档页数:4
上海建平中学数学全等三角形(提升篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.2.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角 ∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=.故答案为:1702n -︒ 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.3.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.【详解】延长AB 至F ,使BF =CN ,连接DF .∵BD =CD ,且∠BDC =140°,∴∠BCD =∠DBC =20°.∵∠A =40°,AB =AC =2,∴∠ABC =∠ACB =70°,∴∠DBA =∠DCA =90°.在Rt △BDF 和Rt △CND 中,∵BF =CN ,∠DBA =∠DCA ,DB =DC ,∴△BDF ≌△CDN ,∴∠BDF =∠CDN ,DF =DN .∵∠MDN =70°,∴∠BDM +∠CDN =70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.4.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相交于点 D ,过点 D 分别作 DE⊥AB ,DF⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,CD BDDF DE⎧⎨⎩==,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=12(11-5)=3.故答案为:3.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.如图,已知30AOB∠=︒,点P在边OA上,14OD DP==,点E,F在边OB上,PE PF=.若6EF=,则OF的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM垂直于OA于M,作PN垂直于OB 于点N,证明△PMD≌△PND,进而求出DF长度,从而求出OF的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP ,∠PND=∠PMD=90°,∴△PND ≌△PMD ,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.6.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.7.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ ,所以△AEP≌△CFQ,所以AE=CF ,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE ,所以DE=12AC=12. 故答案为12.8.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∠=∠,∵A ABD∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.9.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.二、八年级数学轴对称三角形选择题(难)11.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A .511a 32⨯()B .511a 23⨯()C .611a 32⨯()D .611a 23⨯() 【答案】A【解析】 连接AD 、DB 、DF ,求出∠AFD=∠ABD=90°,根据HL 证两三角形全等得出∠FAD=60°,求出AD ∥EF ∥GI ,过F 作FZ ⊥GI ,过E 作EN ⊥GI 于N ,得出平行四边形FZNE 得出EF=ZN=13a ,求出GI 的长,求出第一个正六边形的边长是13a ,是等边三角形QKM 的边长的13;同理第二个正六边形的边长是等边三角形GHI 的边长的13;求出第五个等边三角形的边长,乘以13即可得出第六个正六边形的边长. 连接AD 、DF 、DB .∵六边形ABCDEF 是正六边形, ∴∠ABC=∠BAF=∠AFE ,AB=AF ,∠E=∠C=120°,EF=DE=BC=CD ,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt △ABD 和RtAFD 中AF=AB {AD=AD∴Rt △ABD ≌Rt △AFD (HL ),∴∠BAD=∠FAD=12×120°=60°, ∴∠FAD+∠AFE=60°+120°=180°,∴AD ∥EF ,∵G 、I 分别为AF 、DE 中点,∴GI ∥EF ∥AD ,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是13a,即等边三角形QKM的边长的13,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=13a,∵GF=12AF=12×13a=16a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=12GF=112a,同理IN=112a,∴GI=112a+13a+112a=12a,即第二个等边三角形的边长是12a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是13×12a;同理第第三个等边三角形的边长是12×12a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是13×12×12a;同理第四个等边三角形的边长是12×12×12a,第四个正六边形的边长是13×12×12×12a;第五个等边三角形的边长是12×12×12×12a,第五个正六边形的边长是13×12×12×12×12a ; 第六个等边三角形的边长是12×12×12×12×12a ,第六个正六边形的边长是13×12×12×12×12×12a , 即第六个正六边形的边长是13×512()a , 故选A .12.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。
2024届建平中学高三(下)3月月考数学试卷一,填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.已知集合{}12A x x =-≤≤,{}0B x x =>,则AB =_____________. 2.若2sin 3x =-,则cos2x =____________ 3.设i 为虚数单位,若复数()()1i 1i a ++是纯虚数,则实数a =_____________.4.设随机变量()~,B n p ξ,且[] 1.6E ξ=,[] 1.28D ξ=,则p =____________.5.圆锥侧面展开图扇形的圆心角为3π,底面圆的半径为1,则圆锥的侧面积为____________. 6.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_____________(结果用最简分数表示)7.在ABC △中,内角A ,B ,C 所对应的边分别为a ,b ,c ,且1a =,4cos 5A =,5cos 13B =,则b =____________. 8.甲乙两人射击,每人射击一次.已知甲命中的概率是0.8,乙命中的概率是0.7,两人每次射击是否命中互不影响.已知甲,乙两人至少命中一,则甲命中的概率为____________.9.已知1F ,2F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PF QF 的面积为___________.10.设12a =,121n n a a +=+,21n n n a b a +=-,*n ∈N ,则数列{}n b 的通项公式n b =__________. 11.已知A ,B 是平面内两个定点,且2AB =,点集{}6,5P AP AB AP Ω=⋅=≤.若,M N ∈Ω,则向量AM ,AN 夹角的余弦值的取值范围是__________.12.若函数()y f x =的图象上存在不同的两点,使得函数的图象在这两点处的切线互相垂直,则称函数()y f x =具有T 性质,若函数()2sin cos cos 2c g x ax b x x c x =-++具有T 性质,其中a ,b ,c 为实数,且满足221b c +=,则实数a b c ++的取值范围是___________.二,单选题(本大题共4题,满分20分)13.已知a ∈R ,则“1a >”是“12a a +>”的(,,,,) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.从某中学甲,乙两班各随机抽取10名同学,测量他们的身高(单位:cm ),所得数据用茎叶图表示如图,由此可估计甲,乙两班同学的身高情况,则下列结论正确的是(,,,,)A.甲乙两班同学身高的极差相等B.甲乙两班同学身高的平均值相等C.甲乙两班同学身高的中位数相等D.乙班同学身高在175cm 以上的人数较多15.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有(,,,,).A.4个B.6个C.10个D.14个16.已知函数()f x ,()g x 定义域为R ,且()()()()()f x g y f y g x f x y -=-,()()()()()g x g y f x f y g x y -=-,()00g ≠,则下列结论正确的是(,,,,)①若()()111f g +=,则()()202420241f g -=,②若()()111f g -=,则()()202420241f g +=三,解答题(本大题共有5题,满分76分)17.如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.18.设函数()sin sin 62f x x x ππωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其中03ω<<.已知06f π⎛⎫= ⎪⎝⎭. (1)求ω.(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y x g =的图象,求()g x 在3,44ππ⎡⎤-⎢⎥⎣⎦上的最小值. 19.地区期末进行了统一考试,为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成6组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中m 的值.(2)在这50名学生中用分层抽样的方法从成绩在[)70,80,[)80,90,[]90,100的三组中抽取了11人,再从这11人中随机抽取3人,记ξ为3人中成绩在[)80,90的人数,求ξ的分布列和数学期望.(3)转化为百分制后,规定成绩在[]90,100的为A 等级,成绩在[)70,90的为B 等级,其它为C 等级.以样本估计总体,用频率代替概率。
第1页共9页语文部分建平自招素以注重初高中知识内容的衔接作为出题原则,比较关注高中知识和学习技能的考核。
简单来说,自招的考试内容是中考内容的拔高,超出了初中的正常学习范围。
虽然近几年建平中学语文自招考试的整体难度总体上低于四校水平,但考试的模块内容是一致的,都考察以下几种重要能力:1、语法的掌握与运用能力初中老师一般不讲语法,但高中与自招考试中语法却是必考考点,这就要求学生要超前学习高中的语法知识。
自招的语法范围包括古代汉语语法与现代汉语语法;搭配不当与语序颠倒两大类问题是自招每年都会考到的,其下分为动宾搭配不当、主谓颠倒、虚词位置不当、分句间次序不当等多个细致考点。
自招考生需要提前学习并区分这些语法考点。
要说解决方案,考生可以提前找来高一、高二的课本进行超前学习。
只要记住基本的句子结构(主谓宾定状补)和固定搭配组合,对语病类型能区分的清,就基本可以应对自招考试中的语法问题了。
至于题型方面,自招的语法部分主要分为六种考查形式:找错别字、辨别加点字拼音、找病句、成语误用、语句排序、选句填空。
以一道题为例:例题:填入下面一段文字横线处的语句,最恰当的一句是()辣,我们都不陌生,很多人无辣不欢甚至吃辣上瘾,这是因为辣椒素等辣味物质刺激舌头、口腔的神经末梢时,会在大脑中形成类似灼烧的感觉,机体就反射性地出现心跳加速、唾液及汗液分泌增多等现象,______________________,内啡肽又促进分泌多巴胺,多巴胺能在短时间内令人高度兴奋,带来“辣椒素快感”,慢慢地我们吃辣就上瘾了。
A.大脑在这些兴奋性的刺激下把内啡肽释放出来B.内啡肽因这些兴奋性的刺激而被大脑释放出来C.这些兴奋性的刺激使大脑释放出内啡肽D.这些兴奋性的刺激使大脑把内啡肽释放出来这道题考察了句子的语法运用和逻辑推理能力,需要考生找出文段语境与语境、句子与句子之间的逻辑关系。
首先看空前一句,“现象”之后接“这些”更匹配,排第2页共9页除A、B。
2024~2025学年上海市建平中学高一上学期期初学生数学素养检测数学 试卷 9.13(考试时间120分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。
若因填涂模糊导致无法识别的后果自负。
一.填空题(12题共54分,1~6题每题4分,7~12题每题5分)1.用描述法表示直角坐标系中第二象限的所有点组成的集合2.若3a 2+2b 2=(a+b )2,则2024a +2025b =_____________3.设a ,b ∈R ,集合{1,a+b=______4.已知,,则 5.若不等式的解集为,则实数a 的取值集合为_______6.已知集合,若,则m=_________7.已知集合,,若,则a 的取值范围为_______8.已知:,:,若是的必要不充分条件,则实数的取值范围是9.已知,记符号表示不大于的最大整数,集合,B=[-1,3],则A ∩B=10.已知方程的两根为,且满足,则实数=_______11.已知x ,y 是正实数,且关于x ,y 的方程x +y =1k x +y 有解,则实数k 的取值范围是 .12.在算式“”的两个中,分别填入两个正整数,使它们的倒数之和最小,则这两个数构成的数对(□,○)应为_________二.选择题(4题共18分,13~14每题4分,15~16每题5分)13. 若a ,,,,则下列不等式成立的是( )A .B .C .D .14.若关于的方程至多有一个实数根,则它成立的必要条件可以是( )A .B .C .D .15. 关于的不等式的解集为,对于系数、、,有如下结论:①;②;③;④;⑤ 则结论正确的数量为()A .1B .2C .3D .4 5.43x =0.63y =11x y-=1ax b +<()1,2-{}{}22|320,|(1)0A x x x B x x m x m =++==+++=A B A = {}|24A x x =-<<{}10|B x x a =+-<{}|2A B x x ⋃=>-α124m x m +≤≤+β13x ≤≤αβm x R ∈[]x x 2{|[]2[]3}A x x x =-=()2110x a x a +-++=12,x x 22124x x +=a 4130⨯+⨯=□○,□○b Rc ∈a b >11a b <22a b <2211a b c c >++a c b c>x ()2110x m x +-+=13m -<<24m -<<4m <12m -≤<x 20ax bx c ++>()2,1-a b c 0a >0b >0c >0a b c ++>0a b c -+>16.关于集合,下列说法正确的是( )A.空集是任何集合的真子集B.集合真子集的个数是2n -1,其中n 是集合中元素的数量C.无限集不可能真包含无限集D.对于有序数对(a,b ),(c ,d )属于集合A ,必有a ≠c 或b ≠d三.解答题(共78分,17~19每题14分,20~21每题18分)17.已知关于x 的不等式的解集为M.(1)当时,求集合M ;(2)若,求实数a 的取值范围.18.(1)解:关于的不等式 (2)已知不等式对一切都成立.求实数的取值范围.19.已知实数a 、b 、c 、d ,显然,定义两实数的误差为两数差的绝对值.(1)求证:;(2)若任取a ,,a 与c 的误差、b 与d 的误差最大值均为0.1,求ab 与cd 误差的最大值,并求出此时a 、b 、c 、d 的值.20.已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R.(1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.50ax x a--≤4a =5M ∉x ()()331m x x -<+()()222240m x m x ----≤R x ∈m ab cd ab ad ad cd -=-+-ab cd a b d d a c --+-≤[]1,10b ∈21.对于正整数的子集A={a1,a2,a3……a n}(n∈Z且n>1),如果任意去掉其中一个元素a i(i=1,2,3……n)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A为“平分集”(1)请你直接写出一个‘平分集’(2)若集合B={a1,a2,a3……a n}(n∈Z且n>1)是‘平分集’①判断n的奇偶性并证明②求:集合A中元素个数的最小值参考答案及评分标准填空题(1~12题)1.且2.23.04.25.{-2}6.1或27.[-3,3)8.(-12,0)9.10.-111.(22,1]12.(5,10)选择题(13~16题)13.C14.B15.B16.D解答题(17~21题)17.(1)[54,4)(7分)(2)(1,5](7分)18.(1)若m >3 则x <3+3m m ―3若m=3 0<12恒成立 x ∈R若m <3,x >3+3m m ―3(7分)(2)[-2,2](7分)19.(1)证略(7分)(2)2.01,当且仅当a=10,b=10,c=10.1,d=10.1(7分)20.(1)k=0 (-∞,4) k=2 {x|x ≠4} k <0(k+4k <x <4)k >0且k ≠2 (-∞,4)∪(k+4k ,﹢∞)(9分)(2){-3,-2,-1,0,1,2,3}(9分)21.(1){1,3,5,7,9,11,13}(6分)(){,0x y x <}0y >[1,0){3}-⋃(2)n为奇数(6分)(3)最小值为7 例同(1)(6分)。
2016年建平中学自招数学题满分:120分 建议完成时间:80分钟一、视频题1.已知同一直线的两个力平衡,现在把方向向东大小为6N 的力的方向改为向南,那么这两个力的合力方向为:____________,大小为:_______________.2.如图所示,则这3个力的合力大小为:___________二、选择题(选项已忘)3.9的算术平方根式:__________4.已知方程02=++b ax x 的根为m 、n (m<n ),方程22=++b ax x 的根为p 、q (p<q ),则m 、n 、p 、q 的大小关系是:______________5.如图,点O 是菱形ABCD 对角线AC 上的一点,以OA 为半径的⊙O 与BC 相切,已知2=OC ,求⊙O 面积____________二、填空题6.函数:23+-=x x y 的定义域是:____________ 7.已知四边形ABCD 内接于⊙O ,AD//BC ,AB=CD ,,,︒=∠︒=∠3034BCO DBC 求=∠A __________8.如图,已知等边三角形ABC 边长为8,点D 为AC 上的一点,AD =2,DE 始终平行于BC ,MN 为三角形ADE 的中位线,现将点D 向右移动,移动到点C 处停止,求在上述过程中,MN 扫过的面积:__________三、解答题9.已知)(),(0,86,0B A ,点O 为AB 上的一点,以点O 为圆心,AO 为半径作圆,交AB 于点P ,AP=a .过点P 作x 轴的垂线段,垂足为点M.(1)求AB 的长;(2)如果⊙O 与x 轴相切,求a 的值,(3)点D 为x 轴上的一点,如果△AOD 与△DMP相似,请直接写出点D 的个数,及在该个数的情况下a 的取值范围.10.一名老师带领7名学生去参加数学竞赛,他们决定租车前往,每辆车可以乘坐4个人,于是他们决定分成A 、B 两组前往。
上海建平中学数学三角形解答题(提升篇)(Word 版 含解析)一、八年级数学三角形解答题压轴题(难)1.(1)如图1.在△ABC 中,∠B =60°,∠DAC 和∠ACE 的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小; (3)如图3,若∠B =α,11,PAC DAC PCA E n nAC ∠=∠∠=∠,则∠P = (用含α的代数式表示).【答案】(1)∠O =60°;(2)90°-12α;(3)11(1)180P n nα∠=-⨯- 【解析】 【分析】(1)由题意利用角平分线的性质和三角形内角和为180°进行分析求解;(2)根据题意设∠BAC=β,∠ACB=γ,则α+β+γ=180°,利用角平分线性质和外角定义找等量关系,用含α的代数式表示∠O 的大小;(3)利用(2)的条件可知n=2时,∠P=111-18022α︒⨯-(),再将2替换成n 即可分析求解. 【详解】解:(1)因为∠DAC 和∠ACE 的角平分线交于点O ,且∠B=60°, 所以18060120OAC OCA οοο∠+∠=-=, 有∠O=180120οο-=60°.(2)设∠BAC=β,∠ACB=γ,则α+β+γ=180° ∵∠ACE 是△ABC 的外角, ∴∠ACE=∠B+∠BAC=α+β ∵CO 平分∠ACE11()22ACO ACE αβ∴∠=∠=+ 同理可得:1()2CAO αγ∠=+ ∵∠O+∠ACO+∠CAO=180°,∴11180180()()22O ACO CAO αβαγ︒︒∠=-∠-∠=-+-+1180()2αβαγ︒=-+++111180()1809090222αβααα︒︒︒︒=-++=--=-;(3)∵∠B=α,11,PAC DAC PCA E n nAC ∠=∠∠=∠, 由(2)可知n=2时,有∠P=1180902α︒︒--=111-18022α︒⨯-(),将2替换成n 即可, ∴11(1)180P n nα∠=-⨯-. 【点睛】本题考查用代数式表示角,熟练掌握并综合利用角平分线定义和三角形内角和为180°以及等量替换技巧与数形结合思维分析是解题的关键.2.如图, A 为x 轴负半轴上一点, B 为x 轴正半轴上一点, C(0,-2),D(-3,-2). (1)求△BCD 的面积;(2)若AC ⊥BC,作∠CBA 的平分线交CO 于P ,交CA 于Q,判断∠CPQ 与∠CQP 的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ =∠CQP ,理由见解析; 【解析】 【分析】(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ ,然后根据等角的余角相等解答; 【详解】解:(1)∵点C (0,-2),D (-3,-2), ∴CD=3,且CD//x 轴∴△BCD 面积=12×3×2=3; (2)∠CPQ =∠CQP , ∵AC ⊥BC ,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.3.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.4.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.【答案】(1) 70°,125°;(2)∠BAC=60° (3) 45°【解析】分析:(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=12∠PBC ,∠QCB=12∠PCB,求出∠QBC+∠QCB 的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC 的度数.详解:(1)∵∠DBC=∠A+∠ACB ,∠BCE=∠A+∠ABC , ∴∠DBC+∠BCE=180°+∠A=220°,∵BP 、CP 分别是△ABC 的外角∠CBD 、∠BCE 的角平分线,∴∠CBP+∠BCP=12(∠DBC+∠BCE )=110°, ∴∠BPC=180°﹣110°=70°,∵BQ 、CQ 分别是∠PBC 、∠PCB 的角平分线,∴∠QBC=12∠PBC ,∠QCB=12∠PCB , ∴∠QBC+∠QCB=55°, ∴∠BQC=180°﹣55°=125°; (2)∵BM ∥CN ,∴∠MBC+∠NCB=180°,∵BM 、CN 分别是∠PBD 、∠PCE 的角平分线,∴34(∠DBC+∠BCE )=180°, 即34(180°+∠BAC )=180°, 解得∠BAC=60°; (3)∵∠BAC=120°,∴∠MBC+∠NCB=34(∠DBC+∠BCE )=34(180°+α)=225°,∴∠BOC=225°﹣180°=45°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.5.ABC 中,AD 是BAC ∠的平分线,AE BC ⊥,垂足为E ,作CF//AD ,交直线AE 于点F.设B α∠=,ACB β∠=.()1若B 30∠=,ACB 70∠=,依题意补全图1,并直接写出AFC ∠的度数; ()2如图2,若ACB ∠是钝角,求AFC ∠的度数(用含α,β的式子表示);()3如图3,若B ACB ∠∠>,直接写出AFC ∠的度数(用含α,β的式子表示).【答案】(1)补图见解析,AFC 20∠=;(2) ()1AFC 180βα2∠=--;(3) ()1AFC αβ2∠=-. 【解析】 【分析】(1)先根据三角形内角和定理求出∠BAC 和∠CAE ,根据角平分线定义求出∠CAD ,即可求出答案;(2)先根据三角形内角和定理求出∠BAC ,根据角平分线定义求出∠BAD ,根据三角形外角性质求出∠ADC ,根据三角形内角和定理求出∠DAE ,根据平行线的性质求出即可; (3)求出∠DAE 度数,根据平行线的性质求出即可. 【详解】 解:()1如图1,B 30∠=,ACB 70∠=,BAC 180B ACB 80∠∠∠∴=--=,AD 是BAC ∠的平分线,1CAD CAB 402∠∠∴==,AE BC ⊥,AEC 90∠∴=,ACB 70∠=,EAC 180907020∠∴=--=,DAE CAD CAE 402020∠∠∠∴=-=-=,CF//AD ,AFC DAE 20∠∠∴==;()2如图2,ABC 中,BAC B ACB 180∠∠∠++=, ()BAC 180B ACB ∠∠∠∴=-+. ()180αβ=-+,AD 是BAC ∠的平分线,()11BAD BAC 90αβ22∠∠∴==-+,()()11ADE B BAD α90αβ90βα22∠∠∠∴=+=+-+=--,AE BC ⊥,DAE ADE 90∠∠∴+=,()1DAE 90ADE βα2∠∠∴=-=-, CF//AD ,DAE AFC 180∠∠∴+=,()1AFC 180βα2∠∴=--; ()3如图3,ABC 中,BAC B ACB 180∠∠∠++=, ()BAC 180B ACB ∠∠∠∴=-+, ()180αβ=-+,AD 是BAC ∠的平分线,()11CAD BAC 90αβ22∠∠∴==-+,AE BC ⊥,AEC 90∠∴=, ACB β∠=,EAC 18090β90β∠∴=--=-,()()()11DAE CAE CAD 90β90αβαβ22∠∠∠⎡⎤∴=-=----=-⎢⎥⎣⎦.【点睛】本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.6.我校快乐走班数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答: .(填“能“或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1.则θ= 度;活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若只能摆放5根小棒,求θ的范围.【答案】(1)能.(2)θ=22.5;(3) 15°≤θ<18°.【解析】【分析】(1)根据已知条件:小棒两端能分别落在两射线上进行判断即可;(2)根据等腰三角形的性质和三角形的外角性质即得结果;(3)根据等腰三角形的性质和三角形的内角和定理可得关于θ的不等式组,解不等式组即得结果.【详解】(1)∵根据已知条件∠BAC=θ(0°<θ<90°)小棒两端能分别落在两射线上,∴小棒能继续摆下去;(2)∵A1A2=A2A3,A1A2⊥A2A3,∴∠A2A1A3=45°,∴∠AA2A1+∠θ=45°,∵∠AA2A1=∠θ,∴∠θ=22.5°;(3)如图乙,∵A2A1=A2A3,∴∠A2A3A1=∠A2A1A3=2θ°,∵A2A3=A4A3,∴∠A3A2A4=∠A3A2A4=3θ°,∵A4A3=A4A5,∴∠A4A3A5=∠A4A5A3=4θ°,根据三角形内角和定理和等腰三角形的性质,可得6θ⩾90°,5θ<90°,∴15°⩽θ<18°.【点睛】本题考查了等腰三角形的性质、三角形内角和定理和三角形的外角性质,根据题意找出规律并结合等腰三角形的性质是解题的关键.7.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.【答案】(1)证明见解析;(2)∠D+∠A+∠ABD+∠ACD=360°;(3)∠D+∠ACD=∠A+∠ABD,证明见解析.【解析】试题分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.(3)根据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD. 试题解析:(1)证明:延长BD 交AC 于点E .∵∠BDC 是△CDE 的外角,∴∠BDC=∠2+∠CED,∵∠CED 是△ABE 的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD 、AC 交于点E ,∵∠AED 是△ABE 的外角,∴∠AED=∠1+∠A,∵∠AED 是△CDE 的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.点睛:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.8.已知,在ABC 中,∠A =60°,(1)如图①,∠ABC 和∠ACB 的角平分线交于点O ,则∠BOC= ;(2)如图②,∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,则2_________BO C ∠=;(3)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -(内部有1n -个点),则1-∠=n BO C ;(4)如图③,∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -,若190-∠=︒n BO C ,求n 的值.【答案】(1)120°;(2)100°;(3)60120+⎛⎫︒⎪⎝⎭n n ;(4)n=4 【解析】【分析】 (1)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据角平分线的定义即可求出∠OBC +∠OCB ,再根据三角形的内角和定理即可求出结论;(2)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据三等分线的定义即可求出∠O 2BC +∠O 2CB ,再根据三角形的内角和定理即可求出结论; (3)根据三角形的内角和定理即可求出∠ABC +∠ABC ,然后根据n 等分线的定义即可求出∠O n -1BC +∠O n -1CB ,再根据三角形的内角和定理即可求出结论; (4)根据(3)的结论列出方程即可求出结论.【详解】解:(1)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的角平分线交于点O ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ∴∠OBC +∠OCB=12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =60°∴∠BOC=180°-(∠OBC +∠OCB )=120°故答案为:120°.(2)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的三等分线分别对应交于点O 1,O 2,∴∠O 2BC=23∠ABC ,∠O 2CB=23∠ACB ∴∠O 2BC +∠O 2CB=23∠ABC +23∠ACB=23(∠ABC +∠ACB ) =80° ∴2∠=BO C 180°-(∠O 2BC +∠O 2CB )=100°故答案为:100°.(3)∵在ABC 中,∠A =60°,∴∠ABC +∠ABC=180°-∠A=120°∵∠ABC 和∠ACB 的n 等分线分别对应交于点O 1,O 2,……,1n O -∴∠O n -1BC=1n n -∠ABC ,∠O n -1CB=1n n-∠ACB ∴∠O n -1BC +∠O n -1CB=1n n -∠ABC +1n n -∠ACB =1n n-(∠ABC +∠ACB ) =120120-⎛⎫ ⎪⎝⎭n n ° ∴1-∠=n BO C 180°-(∠O 2BC +∠O 2CB )=60120+⎛⎫︒⎪⎝⎭n n 故答案为:60120+⎛⎫︒ ⎪⎝⎭n n (4)由(3)知:1-∠=n BO C 60120+⎛⎫︒ ⎪⎝⎭n n ∴6012090+=n n解得:n=4 经检验:n=4是原方程的解.【点睛】本题考查了n 等分线的定义和三角形的内角和定理,掌握n 等分线的定义和三角形的内角和定理是解决此题的关键.9.已知:△ABC 中 ∠A=64°, 角平分线BP 、CP 相交于点P .1若BP 、CP 是两内角的平分线,则∠BPC=_____(直接填数值) 求证:01902BPC A ∠=+∠. 2若BP 、CP 是两外角的平分线,则∠BPC=_____(直接填数值)3若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=_______(直接填数值)4 由①②③的数值计算可知:∠BPC 与∠A 有着密切的数量关系,请就第②③写出你的发现【答案】(1)122°;(2)58°;(3)32°.(4).若BP 、CP 是两外角的平分线,则∠BPC=90°-12∠A ; 若BP 、CP 是一内角的平分线,一外角的平分线,则∠BPC=12∠A . 【解析】【分析】①根据三角形角平分线的性质可得,∠BPC +∠PCB =90°-12∠A ,根据三角形内角和定理可得∠BPC =90°+12∠A ; ②根据三角形外角平分线的性质可得∠BCP =12(∠A +∠ABC )、∠PBC =12(∠A +∠ACB );根据三角形内角和定理可得∠BPC =90°-12∠A ; ③根据BP 为∠ABC 的角平分线,CP 为△ABC 外角∠ACE 的平分线,可知,∠A =180°-∠1-∠3,∠P =180°-∠4=∠5=180°-∠3-12(∠A +2∠1),两式联立可得2∠P =∠A . ④根据前面的情况直接写出∠BPC 与∠A 的数量关系,【详解】 解:(1)证明:∵在△ABC 中,PB 、PC 分别是∠ABC 、∠ACB 的平分线,∠A 为x ° ∴∠PBC +∠PCB =12(180°-∠A )=12×(180°-x °)=90°-12∠A故∠BPC=180°-(∠PBC+∠PCB)=180°-(90°-12∠A)=90°+12∠A;则∠BPC=122°;(2)理由如下:∵BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∠A为x°∴∠BCP=12(∠A+∠ABC)、∠PBC=12(∠A+∠ACB),由三角形内角和定理得,∠BPC=180°-∠BCP-∠PBC,=180°-12[∠A+(∠A+∠ABC+∠ACB)],=180°-12(∠A+180°),=90°-12∠A;则∠BPC=58°;(3)如图:∵BP为∠ABC的内角平分线,CP为△ABC外角∠ACE的平分线,两角平分线交于点P,∴∠1=∠2,∠5=12(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3∴∠1+∠3=180°-∠A----①在△CPE中,∠P=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠P=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A----②,把①代入②得2∠P=∠A.则∠BPC=32°;(4)若BP、CP是两外角的平分线,则∠BPC=90°-12∠A;若BP、CP是一内角的平分线,一外角的平分线,则∠BPC=12∠A.故填为:(1)122°;(2)58°;(3)32°.【点睛】此类题目考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.10.已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD,BE,交于点P.(1)观察度量,BPC∠的度数为____.(直接写出结果)(2)若绕点A将△ACE旋转,使得180BAC∠=︒,请你画出变化后的图形.(示意图)(3)在(2)的条件下,求出BPC∠的度数.【答案】(1)120°;(2)作图见解析;(3)∠BPC =120°.【解析】分析:(1)∠BPC的度数为120°,理由为:由△ABD与△ACE都是等边三角形,利用等边三角形的性质得到∠DAB=∠ABD=∠CAE=60°,AD=AB,AC=AE,利用等式的性质得到夹角相等,利用SAS得出三角形DAC与三角形BAE全等,由全等三角形的对应角相等得到∠ADC=∠ABE,利用外角性质,等量代换即可得到所求;(2)作出相应的图形,如图所示;(3)解法同(1),求出∠BPC的度数即可.本题解析:(1)∠BPC的度数为120°,理由为:证明:∵△ABD与△ACE都是等边三角形,∴∠DAB=∠ABD=∠CAE=60°,AD=AB,AC=AE,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△DAC与△BAE中,{AD ABDAC BAEAC AE=∠=∠=,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∵∠ADC+∠CDB=60°,∴∠ABE+∠CDB=60°,∴∠BPC=∠DBP+∠PDB=∠ABE+∠CDB+∠ABC=120°;(2)作出相应的图形,如图所示;(3)∵△ABD与△ACE都是等边三角形,∴∠ADB=∠BAD=∠ABD=∠CAE=60°,AD=AB,AC=AE,∴∠DAB+∠DAE=∠CAE+∠DAE,即∠DAC=∠BAE,在△DAC与△BAE中,{AD ABDAC BAC AC AE=∠=∠=,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∵∠ABE+∠DBP=60°,∴∠ADC+∠DBP=60°,∴∠BPC=∠BDP+∠PBD=∠ADC+∠DBP+∠ADB=120°.点睛:本题考查了等边三角形的性质,外角性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.。
2016建平中学自主招生数学真题(附详解)
1、如图,在平面直角坐标系中有Rt △ABC ,︒=∠90A ,AC AB =,)0,2(-A 、
)1,0(B 、)2,(d C 。
(1)求d 的值;
(2)将△ABC 沿x 轴的正方向平移,在第一象限内C B 、两点的对应点''C B 、正好落在某反比例函
数图像上。
请求出这个反比例函数和此时的直线''C B 的解析式;
(3)在(2)的条件下,直线''C B 交y 轴于点G 。
问是否存在x 轴上的点M 和反比例函
数图像上的点P ,使得四边形'PGMC 是平行四边形。
如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由。
【答案】解:(1)作x CN ⊥轴于点N 。
在CNA Rt △和AOB Rt △中, ∵AB AC OA NC ===,2, ∴CNA Rt △≌AOB Rt △)(HL 。
∴3,1=+===AO NA NO BO AN ,又∵点C 在第二象限,∴3-=d 。
x
x
(2)设反比例函数为x
k
y =
,点'C 和'B 在该比例函数图像上, 设)2,('c C ,则)1,3('+c B 。
把点'C 和'B 的坐标分别代入x
k
y =
,得3,2+==c k c k 。
∴3,32=+=c c c 则6=k 。
∴反比例函数解析式为x
y 6
=。
得点)2,3('C ;)1,6('B 。
设直线'C 'B 的解析式为b ax y +=,把'C 、'B 两点坐标代入
得⎩⎨⎧=+=+1623b a b a ,解得⎪⎩⎪⎨⎧=-
=3
3
1b a 。
∴直线''C B 的解析式为331+-=x y 。
(3)设Q 是G C '的中点,由)2,3('),3,0(C G ,得点Q 的横坐标为
23,∴)2
5
,23(Q 。
(解法改进下,由中点公式可得5.2=Q y ,∴点5=y P ,又因为点P 在反比例函数图像上,所以点
)0,5
9
(),5,56(M P ) 过点Q 作直线l 与x 轴交于'M 点,与x
y 6
=
的图象交于'P 点,若四边形'''C GM P 是平行四边形,则有''QM Q P =,易知点'M 的横坐标大于
23,点'P 的横坐标小于2
3。
作x H P ⊥'轴于点H ,y QK ⊥轴于点,K H P '与QK 交于点E ,作x QF ⊥轴于点F ,
则
''QFM EQ P ≌△△.
设t FM EQ ==',则点'P 的横坐标t x -=
23
,点'p 的纵坐标y 为t t x 23122
366-=-=, 点'M 的坐标是)0,23(
t +。
∴2
52312'--=t E P 。
由''QM Q P =,得2
2
2
2
''FM QF EQ E P +=+,∴2222)2
5
()252312(
t t t +=+--, 整理得:
52312=-t
,解得103
=t (经检验,它是分式方程的解)。
∴
56
1032323=-=-t ,
510
323122312=⨯
-=-t
,
5
91032323=+=+t 。
∴点)0,5
9('),5,5
6
('M P ,则点'P 为所求的点P ,点'M 为所求的点M .
(2)延长AB 到D
,使得AC BD =,延长AC 到E ,使得AB CE =,连接DE . ①如图2,连接BE ,若︒=∠60BAC ,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明;
证明:(1)延长AP 至H ,使得AP PH =,连接PH HC BH ,,; ∵PC BP =;∴四边形ABHC 是平行四边形; ∴HC AB =;在ACH ∆中,AC HC AH +<;
∴AC AB AP +<2;即)(2
1
AC AB AP +<
(2)①答:AP BE 2=.
证明:过B 作AE BH //,交DE 于H ,连接AH CH ,; ∴︒=∠=∠601BAC ;∵CE AB AC DB ==,,
∴AE AD =, ∴AED ∆是等边三角形, ∴︒=∠=∠=∠=∠6021AED D ; ∴BDH ∆是等边三角形;
∴AC BH DH BD ===;∴四边形ABHC 是平行四边形;
∵点P 是BC 的中点,∴点P 是四边形ABHC 对角线BC AH ,的交点, ∴点H P A ,,共线,∴AP AH 2=可证EDB ADH ∆≅∆; ∴AP BE AH 2==;
① 证明:分两种情况:
ⅱ)当AC AB ≠时,以BC BD ,为一组邻边作平行四边形BDGC (如图) ∴AC GC DB ==,DG BC BAC =∠=∠,1,
∵CE AB =;∴CEG ABC ∆≅∆;∴DG EG BC ==;。