混凝土材料的弹粘塑性损伤本构模型研究
- 格式:docx
- 大小:36.87 KB
- 文档页数:2
混凝土本构关系模型 一、线弹性本构模型1、 线弹性均质的本构模型当混凝土无裂缝时,可以将混凝土看成线弹性均质材料,用广义胡克定律来表达本构关 系:kl ijkl ij C εσ=式中,ijklC 为材料常数,为一四阶张量,一般有81个常数,如果材料为正交异性时,常数可减少至9个,如材料为各向均质时,可用两个常数λ、μ来表达,λ、μ称为Lame 常数。
ijkk ij ij δλεμεσ+=2当j i =,μλσε23+=kkkk ,代入上式()kk ijij ij σμμλλσσε2232/+-=E 、ν、λ、μ之间的关系如下:()ν213-=E K ,()ν+=12EG GK KGE +=39,()G K G K +-=3223ν 在工程计算中采用下列形式⎪⎭⎫ ⎝⎛+-=E EE 33221111σσνσε 同样可写出22ε、33ε的表达式。
()12121112τντγEG+==同样可写出22γ、33γ的表达式。
如上述各式用张量表示可写成:ij kk ij ij EE δσνσνε-+=1,()()ij kk ij ij E E δενννενσ2111-+-+=用矩阵形式表达时,可写成张量描述用矩阵形式表达,可写成:3、正交异性本构模型 矩阵描述分块矩阵描述1.3横观各向同性弹性体本构模型其中[]D 表达式为kl ijkl ij C εσ=1、Cauchy 模型Cauchy 模型建立的各向同性一一对应的应力应变关系为()kl ij ij F εσ=可展开为:+++=jk ik ij ij ij εεαεαδασ210根据Caley-Hamilton 定理有:jkik ij ij ij εεϕεϕδϕσ210++=但Cauchy 模型在)2,1,0(=i i ϕ时,一般不能满足ij kk ij ij δλεμεσ+=2。
因而,Cauchy 模型在不同加载途径下得到的应变能和余能表达式不是唯一的或者不存在,不能满足弹性体能量守恒定律,但在单调比例加载途径下还是适用的。
混凝土损伤因子的定义BY lizhen xian271 损伤因子的定义损伤理论最早是1958年Kachanov提出来用于研究金属徐变的。
所谓损伤,是指在各种加载条件下,材料内凝聚力的进展性减弱,并导致体积单元破坏的现象,是受载材料由于微缺陷(微裂纹和微孔洞)的产生和发展而引起的逐步劣化。
损伤一般被作为一种“劣化因素”而结合到弹性、塑性和粘塑性介质中去。
由于损伤的发展和材料结构的某种不可逆变化,因而不同的学者采用了不同的损伤定义。
一般来说,按使用的基准可将损伤分为:(1) 微观基准量1,空隙的数目、长度、面积、体积;2空隙的形状、排列、由取向所决定的有效面积。
(2)宏观基准量1、弹性常数、屈服应力、拉伸强度、延伸率。
2、密度、电阻、超声波波速、声发射。
对于第一类基准量,不能直接与宏观力学量建立物性关系,所以用它来定义损伤变量的时候,需要对它做出一定的宏观尺度下的统计处理(如平均、求和等)。
对于第二类基准量,一般总是采用那些对损伤过程比较敏感,在实验室里易于测量的量,作为损伤变量的依据。
由于微裂纹和微孔洞的存在,微缺陷所导致的微应力集中以及缺陷的相互作用,有效承载面积由A减小为A’。
如假定这些微裂纹和微孔洞在空间各个方向均匀分布,A’与法向无关,这时可定义各向同性损伤变量D为D=(A- A’ )/A事实上,微缺陷的取向、分布及演化与受载方向密切相关,因此材料损伤实际上是各向异性的。
为描述损伤的各向异性,可采用张量形式来定义。
损伤表征了材损伤是一个非负的因子,同时由于这一力学性能的不可逆性,必然有0dDdt≥ 2有效应力定义Cauc hy 有效应力张量'σ''//(1)A A D σσσ==-一般情况下,存在于物体内的损伤(微裂纹、空洞)是有方向性的。
当损伤变量与受力面法向相关时,是为各向异性损伤;当损伤变量与法向无关时,为各向异性损伤。
这时的损伤变量是一标量。
3等效性假设损伤演化方程推导一般使用两种等效性假设,一种是应变等效性假设,另一种是能量等效性假设。
混凝土静力与动力损伤本构模型研究进展述评混凝土静力损伤本构模型主要研究混凝土在长期外力作用下所产生的损伤。
该模型是通过研究混凝土的各种物理、力学性质和损伤特性,建立混凝土的本构模型,以预测混凝土在外力作用下的力学响应。
静力损伤本构模型的研究重点在于如何描述混凝土在长期力学载荷下的损伤累积效应。
常见的静力损伤本构模型有Kachanov-Rabotnov模型、Modified-Kachanov-Rabotnov模型和Nakamura模型等。
这些模型均是基于破裂力学理论和实验结果建立的,在工程领域得到广泛应用。
总体上说,混凝土静力损伤本构模型和混凝土动力损伤本构模型的研究都是为了更好地预测和模拟混凝土在不同载荷作用下的力学响应,进而更好地评估和控制工程结构的损伤和破坏。
这些模型的研究,对于提高工程结构的安全可靠性和延长使用寿命具有重要意义。
目前这些混凝土损伤本构模型仍面临一些挑战和亟待解决的问题。
现有的模型大多基于理论推导和实验数据,缺少考虑材料微结构和内部缺陷对混凝土力学响应的影响以及不同外界环境条件下混凝土力学响应的变化规律。
今后需要进一步深入研究混凝土的微观结构和内部缺陷对力学响应的影响,在此基础上修正和完善损伤本构模型,提高其适用性和准确性。
由于混凝土在不同工程结构中的应用要求和环境条件存在巨大差异,因此需要基于工程实际情况进行本构模型的有效性验证和改进。
应进一步推广高性能混凝土等新型材料的应用,探索建立适合其力学响应特性的新型损伤本构模型,为未来工程结构的设计和施工提供更好的支持。
混凝土材料具有一定的弹性和塑性。
在外界力学载荷作用下,会产生不同程度的损伤和变形。
特别是超出材料界限时,混凝土会失去刚性,变得越来越脆弱。
在进行混凝土损伤本构模型研究时,对于混凝土的断裂特性和损伤行为的研究也非常重要。
静力损伤本构模型是针对混凝土在长期外力作用下所产生的损伤进行研究的。
这种损伤模式主要是由于混凝土在受力过程中会出现隐蔽的微裂缝,从而导致材料的内部结构发生改变。
混凝土损伤本构原理一、引言混凝土是一种广泛应用于建筑工程和基础设施建设的材料,其力学行为的研究对于保证工程结构的安全和可靠具有重要意义。
混凝土材料在使用过程中不可避免地会受到各种外力的作用,从而导致不同程度的损伤。
因此,混凝土损伤本构原理的研究对于深入了解混凝土的力学特性和损伤行为具有重要意义。
二、混凝土的损伤机理混凝土的损伤机理包括两种类型的损伤:微观损伤和宏观损伤。
微观损伤是指混凝土内部的裂缝、毛细孔等缺陷,这些缺陷会导致混凝土的力学性能下降。
宏观损伤是指混凝土整体受到外力作用后出现的裂缝、断裂等破坏形态,这些破坏形态会导致结构的破坏。
混凝土的微观损伤主要包括以下几个方面:1.混凝土的毛细孔是混凝土内部的缺陷之一,其形成与水泥水化反应过程中的蒸发和水泥颗粒内部的饱和度有关。
毛细孔的存在会影响混凝土的力学性能,如弹性模量、抗压强度等。
2.混凝土中的微裂缝是混凝土内部的另一个缺陷,其形成与混凝土的物理性质有关。
微裂缝的存在会降低混凝土的抗拉强度和韧性。
3.混凝土在受到外力作用时,可能会出现局部压缩和剪切变形,这种变形会导致混凝土内部的微裂缝扩展,进而形成新的微裂缝,最终导致混凝土的破坏。
混凝土的宏观损伤主要包括以下几个方面:1.混凝土受到外力作用时,可能会出现局部裂缝,这些裂缝会随着外力作用的增加而扩展,最终导致混凝土的破坏。
2.混凝土的内部缺陷会导致混凝土的力学性能下降,从而降低其抗力水平,当受到超过其承受力的外力作用时,混凝土会发生宏观破坏。
三、混凝土的损伤本构原理损伤本构理论是描述材料本构关系的一种理论模型,混凝土的损伤本构原理是基于混凝土的损伤机理建立的。
1.混凝土的弹性本构关系混凝土的弹性本构关系可以用胡克定律描述,即应力与应变之间的关系是线性的,其中弹性模量是一个固定的常数。
当混凝土受到外力作用时,其应变与应力的关系可以用以下公式表示:σ=Eε其中,σ是混凝土的应力,E是混凝土的弹性模量,ε是混凝土的应变。
混凝土中的塑性本构模型摘要:混凝土由于其都特的性能,现今已成为土木建筑工程中应用最广泛的建筑材料之一。
由于其自身具有不匀质性,研究其力学性能时需建立特殊的本构关系。
本文阐述了混凝土在压应力下的应力应变关系,引用现有塑性本构模型理论,本分析了其不足。
关键词:应力-应变;塑性本构关系1 引言混凝土是现代建筑中使用量最大的建筑材料,在隧道、桥梁、工业与民用建筑等各类工程中发挥着重要作用。
混凝土内部结构中含有砂石骨料、水泥石、游离水分和气泡,而水泥石中又含有凝胶、警惕和未水化的水泥颗粒。
作为一种胶凝材料,不同组分的固有性质、配合比及固液气三相之间物理化学反应,使得混凝土材料类型多样。
混凝土内部含有大量的微裂缝和微空洞,使其具有非线性、随机性等力学行为特点[1],与可作为均质体假定的金属材料物理力学性质有较大不同。
本构关系的研究一直是混凝土材料基础理论科学的研究重点。
传统的混凝土结构分析中,由于受到计算能力的限制,以及对材料本身性能了解不足,对构件与结构分析一般在线弹性范围内进行,而早期的混凝土构件与结构相对比较简单,因此这种分析方法在当时起到了一定的作用。
但是随着混凝土在复杂结构中的广泛应用,需要对结构进行比较精确的分析。
这时简单但比较粗糙的线弹性本构模型的局限性显露了出来。
随着计算机技术和计算理论的快速发展,60年代以来,有限元技术及其发展成为复杂结构分析的一种有力工具。
早期对混凝土结构进行有限元分析的实践表明:误差的主要来源是所选用的混凝土本构模型不能很好地描述材料的本构行为。
因此对混凝土本构关系进行更深入更精确的研究愈显必要。
现已发展形成了多种理论本构模型,如弹性力学本构模型、塑性力学本构模型、断裂力学本构模型、损伤力学本构模型,以及针对高温、低温等特定关系下的本构模型。
由于混凝土材料在卸载后存在残余变形,适合采用塑性理论来描述,这样就形成以塑性理论为基础的混凝土弹塑性本构模型。
金属材料的塑性理论目前已经比较成熟,混凝土的塑性模型也具有较完备的理论基础,可以描述混凝土的循环响应待性、卸载非弹性响应等非线性弹性模型无法描述的本构现象,其适用范围较非线性弹性模型大,能够较好地反映混凝土的主要性能,如:受拉脆性破坏、受压延性破坏、卸载再加载、非比例加载、混凝土硬化、体积膨胀等,所以在工程中弹塑性本构模型的应用也是很广泛的。
基于多尺度分析的混凝土微观损伤模型研究一、研究背景混凝土是建筑、道路等基础建设行业中广泛使用的建筑材料。
然而,在使用过程中,混凝土会受到各种外力的作用,从而导致微观损伤,影响其力学性能和耐久性。
因此,研究混凝土微观损伤模型对于提高混凝土的力学性能和耐久性具有重要意义。
二、研究内容本研究基于多尺度分析方法,建立混凝土微观损伤模型,并对其进行分析和验证。
1. 多尺度分析方法多尺度分析方法是一种研究材料微观结构与力学性能之间关系的方法,它将材料结构分为多个层次,对每个层次进行分析,最终得到全局力学性能。
2. 混凝土微观结构混凝土的微观结构包括水泥胶体、骨料、孔隙和裂缝等组成部分。
其中,水泥胶体和骨料之间的相互作用对于混凝土的力学性能影响最大。
3. 混凝土微观损伤模型基于多尺度分析方法,本研究建立了混凝土微观损伤模型。
该模型将混凝土分为三个层次:宏观层次、中观层次和微观层次。
在宏观层次,采用弹塑性本构模型描述混凝土的应力应变关系;在中观层次,采用多孔介质理论分析混凝土中的孔隙和裂缝;在微观层次,采用有限元方法分析混凝土中水泥胶体和骨料之间的相互作用。
4. 模型验证为验证本研究建立的混凝土微观损伤模型的准确性,本研究进行了模型验证实验。
实验结果表明,本研究建立的混凝土微观损伤模型能够较准确地预测混凝土的力学性能和损伤演化过程。
三、研究结论本研究基于多尺度分析方法,建立了混凝土微观损伤模型,并对其进行了分析和验证。
研究结果表明,该模型能够较准确地预测混凝土的力学性能和损伤演化过程,具有一定的实用价值。
然而,该模型仍存在一些不足之处,需要进一步改进和完善。
混凝土塑性损伤模型及其ABAQUS子程序开发一、本文概述混凝土作为一种广泛使用的建筑材料,其力学行为一直是工程领域的研究热点。
混凝土塑性损伤模型(Concrete Plasticity Damage Model)作为一种能够模拟混凝土在复杂应力状态下的非线性、弹塑性及损伤行为的本构模型,对于准确预测混凝土结构的力学响应和破坏过程具有重要意义。
本文旨在介绍混凝土塑性损伤模型的基本理论,以及如何利用ABAQUS软件的子程序开发功能,实现该模型在数值模拟中的应用。
文章首先将对混凝土塑性损伤模型的基本原理进行阐述,包括模型的损伤演化方程、塑性流动法则以及相关的材料参数。
随后,将详细介绍在ABAQUS软件中开发混凝土塑性损伤模型子程序的步骤和关键技术,包括用户子程序的编写、模型参数的输入和输出处理等。
通过具体的算例分析,文章将展示所开发子程序在模拟混凝土结构力学行为方面的应用效果,并与其他常用模型进行对比分析,以验证所开发子程序的准确性和可靠性。
本文旨在为从事混凝土结构数值模拟的研究人员和工程师提供一套有效的混凝土塑性损伤模型子程序开发方法,以推动混凝土结构数值模拟技术的发展和应用。
二、混凝土塑性损伤模型的基本理论混凝土塑性损伤模型是一种基于塑性力学和损伤力学的本构模型,用于描述混凝土在复杂应力状态下的力学行为。
该模型能够考虑混凝土的塑性变形、刚度退化以及损伤演化,因此在结构分析和数值模拟中得到了广泛应用。
塑性流动理论:混凝土在受力过程中会发生塑性变形,这种变形是不可逆的。
塑性流动理论通过引入塑性势函数和流动法则,描述了混凝土在塑性状态下的应力-应变关系。
塑性势函数用于确定塑性应变的方向,而流动法则则定义了塑性应变率与应力之间的关系。
损伤演化方程:混凝土在受力过程中会发生损伤,导致其刚度降低。
损伤演化方程用于描述混凝土损伤的发展过程。
该方程通常基于能量耗散原理或损伤变量,通过引入损伤因子来量化混凝土的刚度退化。
混凝土材料的弹粘塑性损伤本构模型研究
本文研究了混凝土材料的弹粘塑性损伤本构模型,以下是本文的主要内容:
一、损伤概念及损伤本构模型
1、什么是损伤?
损伤是指材料由于受力产生的本征变化,使材料的力学性能出现不可逆的变化从而造成的本性问题。
2、损伤本构模型是什么?
损伤本构模型是指通过根据材料受力的变形情况,以及数学方法,把材料的损伤进行建模,以及计算材料的力学性能随着损伤而变化的过程。
二、混凝土材料的弹粘塑性损伤本构模型
1、弹粘塑性损伤本构模型基本原理
弹粘塑性损伤本构模型是损伤本构模型的一种,它建立在指数型损伤守恒定律的基础上,指数型损伤守恒定律表明,材料受到的拉伸或压缩应力在非稳态加载或复杂荷载下是不断变化的,在一定的应力范围内材料的延性一定,超出这个应力范围材料的延性随着应力的增加而逐渐减少,当应力达到一定值时材料的损伤不可逆,且其开始脱粘,从而形成断裂。
2、混凝土材料的弹粘塑性损伤本构模型
混凝土材料是一种具有较高粘度的凝固体,其刚度和弹性属中等,也
是结构材料中应用最广泛的材料,其特有的弹粘塑性对它的损伤本构
模型来说非常重要。
通常混凝土损伤本构模型采用的是弹粘塑性模型,它把混凝土的损伤行为分成三个阶段:弹性阶段,粘性阶段和损伤阶段。
在弹性阶段,当受力大于某一阈值时,混凝土开始失去它的原始
弹性,进入粘性阶段。
在这个阶段,应力逐渐增长,但变形率保持不变,直到进入损伤阶段,受力过大,导致材料发生断裂。
三、结论
混凝土材料的弹粘塑性损伤本构模型是混凝土材料从数理模型的角度
去深入分析混凝土的损伤行为,计算得出材料的损伤模量,从而研究
材料的力学行为,为了让混凝土结构物更加安全可靠。