新人教版高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习新人教A版选修2_2
- 格式:doc
- 大小:67.50 KB
- 文档页数:6
2.2.2反证法学习目标核心素养1.了解反证法的思考过程、特点.(重点、易混点)2.会用反证法证明简单的数学问题.(重点、难点)通过反证法的学习,提升学生的逻辑推理素养.反证法1.反证法的定义由证明p⇒q转向证明:¬q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾,从而判定¬q为假,推出q为真的方法,叫做反证法.2.常见的几种矛盾(1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾(例如,导出0=1,0≠0之类的矛盾).1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(3)反证法的实质是否定结论导出矛盾.()[答案](1)√(2)×(3)√2.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是()A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至多有两个大于60°[解析]根据反证法的定义,假设是对原命题结论的否定,故假设三个内角都大于60°.[答案] B3.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设__________.[解析]∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.[答案]b与c平行或相交利用反证法证明否定性命题数,则方程没有整数根”,正确的假设是方程存在实数根x0为() A.整数B.奇数或偶数C.自然数或负整数D.正整数或负整数(2)已知三个正整数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.[解析](1)要证明的结论是“方程没有整数根”,故应假设:方程存在实数根x0为整数,故选A.[答案] A(2)证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.又a,b,c成等比数列,所以b2=ac,即b=ac,所以a+c+2ac=4ac,所以a+c-2ac=0,即(a-c)2=0,所以a =c ,从而a =b =c ,所以a ,b ,c 可以成等差数列,这与已知中“a ,b ,c 不成等差数列”相矛盾.原假设错误,故a , b , c 不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.反证法证明问题的一般步骤1.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.求证:数列{S n }不是等比数列.[证明] 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与公比q ≠0矛盾.所以数列{S n }不是等比数列.利用反证法证明存在性命题于14.[思路探究] “不能都大于”的含义为“至少有一个小于或等于”其对立面为“全部大于”.[解] 假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. ∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0.∴(1-a )+b 2≥(1-a )b >14=12.同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:2.已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.[证明] 假设a ,b ,c ,d 都是非负数,因为a +b =c +d =1,所以(a +b )(c +d )=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.利用反证法证明唯一性命题反证法解题的实质是什么?提示:否定结论、导出矛盾,从而证明原结论正确.【例3】已知直线m与直线a和b分别交于A,B两点,且a∥b.求证:过a,b,m有且只有一个平面.[思路探究]“有且只有”表示“存在且唯一”,因此在证明时,要分别从存在性和唯一性两方面来考虑.[解]因为a∥b,所以过a,b有一个平面α.又因为m∩a=A,m∩b=B,所以A∈a,B∈b,所以A∈α,B∈α.又因为A∈m,B∈m,所以m⊂α,即过a,b,m有一个平面α,如图.假设过a,b,m还有一个平面β异于平面α,则a⊂α,b⊂α,a⊂β,b⊂β,这与a∥b,过a,b有且只有一个平面矛盾.因此,过a,b,m有且只有一个平面.用反证法证明唯一性命题的一般思路证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.3.若函数f(x)在区间[a,b]上的图象连续,且f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.[证明]由于f(x)在[a,b]上的图象连续,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内至少存在一个零点,设零点为m,则f(m)=0.假设f(x)在(a,b)内还存在另一个零点n,即f(n)=0,则n≠m.若n>m,则f(n)>f(m),即0>0,矛盾;若n<m,则f(n)<f(m),即0<0,矛盾.因此假设不正确,即f(x)在(a,b)内有且只有一个零点.1.“自然数a,b,c中恰有一个偶数”的否定正确的为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数[解析]自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数,所以否定正确的是a,b,c中都是奇数或至少有两个偶数.[答案] D2.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角[解析]“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.[答案] B3.“x=0且y=0”的否定形式为________.[解析]“p且q”的否定形式为“¬p或¬q”.[答案]x≠0或y≠04.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设________.[解析]“x≠a且x≠b”形式的否定为“x=a或x=b”.[答案]x=a或x=b5.若a,b,c互不相等,证明:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.[证明]假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加得a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0,∴a=b=c.这与a,b,c互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.。
2.2.2 反证法1.反证法是□01间接证明的一种基本方法.假设原命题□02不成立,经过正确的推理,最后得出□03矛盾,因此说明假设□04错误,从而证明了原命题成立,这样的证明方法叫做反证法. 2.用反证法证明命题的步骤,大体上分为:(1)反设:假设命题的结论□05不成立,即假设结论的反面成立; (2)归谬:从□06假设出发,通过推理论证,得出矛盾; (3)结论:由矛盾判定假设不正确,从而肯定命题的结论正确. 3.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与□07已知条件矛盾,或与□08假设矛盾,或与□09定义、定理、公理、事实矛盾等.反证法中的“反设”和“归谬”(1)反证法中的“反设”,这是应用反证法的第一步,也是关键一步.“反设”的结论将是下一步“归谬”的一个已知条件.“反设”是否正确、全面,直接影响下一步的证明.做好“反设”应注意:①正确分清题设和结论;②对结论实施正确否定;③对结论否定后,找出其所有情况.(2)反证法的“归谬”是反证法的核心,其含义是从命题结论的题设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.1.判一判(正确的打“√”,错误的打“×”) (1)反证法属于间接证明问题的方法.( )(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.( ) (3)反证法的实质是否定结论导出矛盾.( ) 答案 (1)√ (2)× (3)√ 2.做一做(1)已知a ≠0,证明关于x 的方程ax =b 有且只有一解,适宜用________证明. (2)用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有一个能被5整除”,则假设的内容是________.(3)用反证法证明命题“如果a >b ,则3a >3b ”时,假设的内容是________. 答案 (1)反证法 (2)a ,b 都不能被5整除 (3)3a ≤3b探究1 用反证法证明否定性命题 例1 已知f (x )=a x+x -2x +1(a >1),证明方程f (x )=0没有负数根. [证明] 假设x 0是f (x )=0的负数根, 则x 0<0,x 0≠-1且ax 0=-x 0-2x 0+1, 由0<ax 0<1可知0<-x 0-2x 0+1<1,解得12<x 0<2, 这与x 0<0矛盾,故假设不成立. 即方程f (x )=0没有负数根. 拓展提升反证法属于逻辑方法范畴,它的本质体现在“否定之否定等于肯定”,其中第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属于“间接解题方法”,书写格式易错之处是“假设”易错写成“设”.【跟踪训练1】 已知a ,b ,c ,d ∈R ,且ad -bc =1. 求证:a 2+b 2+c 2+d 2+ab +cd ≠1. 证明 假设a 2+b 2+c 2+d 2+ab +cd =1. 因为ad -bc =1,所以a 2+b 2+c 2+d 2+ab +cd =ad -bc . 所以a 2+b 2+c 2+d 2+ab +cd +bc -ad =0. 所以2a 2+2b 2+2c 2+2d 2+2ab +2cd +2bc -2ad =0. 所以(a +b )2+(b +c )2+(c +d )2+(a -d )2=0. 所以a +b =0,b +c =0,c +d =0,a -d =0, 所以a =b =c =d =0,所以ad -bc =0,这与ab -bc =1矛盾,从而假设不成立,原命题成立, 即a 2+b 2+c 2+d 2+ab +cd ≠1.探究2 用反证法证明“至多”“至少”型命题例2 已知a ,b ,c 是互不相等且均不为0的实数,求证:由y =ax 2+2bx +c ,y =bx2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.[证明] 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点. 由y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0,且Δ2=(2c )2-4ab ≤0,且Δ3=(2a )2-4bc ≤0.同向不等式求和得4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0, ∴2a 2+2b 2+2c 2-2ab -2bc -2ac ≤0, ∴(a -b )2+(b -c )2+(a -c )2≤0,∴a =b =c . 这与题设a ,b ,c 互不相等矛盾, 因此假设不成立,从而命题得证. 拓展提升常见结论词与反设词列表如下:【跟踪训练2】 求证下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax-2a =0至少有一个方程有实根时实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32. 证明 若方程没有一个有实根,则⎩⎪⎨⎪⎧16a 2--4a ,a -2-4a 2<0,4a 2+8a <0.解得-32<a <-1.所以若三个方程至少有一个方程有实根,则实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32.探究3 用反证法证明唯一性命题例3 用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行. [证明] 由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b ,这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立.拓展提升证明“唯一性”命题的方法:“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.【跟踪训练3】已知直线m与直线a和b分别交于A,B且a∥b,求证:过a,b,m有且只有一个平面.证明∵如图,a∥b,∴过a,b有一个平面α.又m∩a=A,m∩b=B,∴A∈a,B∈b,∴A∈α,B∈α.又A∈m,B∈m,∴m⊂α.即过a,b,m有一个平面α.假设过a,b,m还有一个平面β异于平面α,则a⊂α,b⊂α,a⊂β,b⊂β,这与a∥b,过a,b有且只有一个平面相矛盾.因此,过a,b,m有且只有一个平面.1.“否定结论”是反证法的第一步,它的正确与否直接影响能否正确使用反证法.否定结论的步骤是:弄清结论本身的情况;找出结论的全部相反情况;正确否定上述结论.2.反证法中引出矛盾的结论,不是推理本身的错误,而是开始假定“结论的反面是正确的”是错误的.3.在反证法证题的过程中,经常画出某些不合常理的图形,甚至是不可能存在的图形,这样做的目的是为了能清楚地说明问题.在证明过程中,每一步推理所得结论的正确性,完全由它所依据的理由来保证,而不能借助图形的直观,这与用直接法通过图形找到证题的途径是完全不一样的.1.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A .假设三个内角都不大于60°B .假设三个内角都大于60°C .假设三个内角至多有一个大于60°D .假设三个内角至多有两个大于60° 答案 B解析 “至少有一个不大于”的否定为“都大于”,所以选B. 2.如果两个实数之和为正数,则这两个数( ) A .一个是正数,一个是负数 B .两个都是正数 C .至少有一个是正数 D .两个都是负数答案 C解析 假设两个数都不是正数,则其和必为负数或零.所以选C.3.命题“关于x 的方程ax =b (a ≠0)的解是唯一的”的结论的否定是________. 答案 无解或至少两解解析 方程解的情况有:①无解;②唯一解;③两个或两个以上的解.4.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是________.答案 {a |a ≤-2或a ≥-1}解析 假设两个一元二次方程均无实根,则有⎩⎪⎨⎪⎧Δ1=a -2-4a 2<0,Δ2=a2--2a,即⎩⎪⎨⎪⎧3a 2+2a -1>0,a 2+2a <0,解得a 的取值集合为:{a |-2<a <-1},所以其补集为{a |a ≤-2或a ≥-1},即为所求的a 的取值范围.5.如果非零实数a ,b ,c 两两不相等,且2b =a +c ,求证:2b =1a +1c不成立.证明 假设2b =1a +1c 成立,则2b =a +c ac =2bac.故b 2=ac . 又b =a +c2,所以⎝⎛⎭⎪⎫a +c 22=ac ,即(a -c )2=0,所以a =c ,这与a ,b ,c 两两不相等矛盾,因此2b =1a +1c不成立.。
2.2.2 反证法[课时作业] [A 组 基础巩固]1.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )A .a <bB .a ≤bC .a =bD .a ≥b解析:“a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B.答案:B2.用反证法证明命题:“a ,b ,c ,d ∈R ,a +b =1,c +d =1,且ac +bd >1,则a ,b ,c ,d 中至少有一个负数”时的假设为( )A .a ,b ,c ,d 全都大于等于0B .a ,b ,c ,d 全为正数C .a ,b ,c ,d 中至少有一个正数D .a ,b ,c ,d 中至多有一个负数解析:至少有一个负数的否定是一个负数也没有,即a ,b ,c ,d 全都大于等于0.答案:A3.“自然数a ,b ,c 中恰有一个偶数”的否定正确的为( )A .a ,b ,c 都是奇数B .a ,b ,c 都是偶数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a ,b ,c 中都是奇数或至少有两个偶数.答案:D4.给定一个命题“已知x 1>0,x 2≠1且x n +1=x3n +3xn3x2n +1,证明对任意正整数n 都有x n >x n +1”,当此题用反证法否定结论时应是( )A .对任意正整数n 有x n ≤x n +1B .存在正整数n 使x n ≤x n +1C .存在正整数n 使x n >x n +1D .存在正整数n 使x n ≥x n -1且x n ≥x n +1解析:“对任意正整数n 都有x n >x n +1”的否定为“存在正整数n 使x n ≤x n +1”.答案:B5.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c∵a ,b ,c ∈(-∞,0),∴a +1a =-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2,b +1b =-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2,c +1c=-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c≤-2,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6,∴三数a +1b 、c +1a 、b +1c中至少有一个不大于-2,故应选C.答案:C6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________________________________________________________________________.解析:“至少有一个”的否定是“没有一个”.答案:没有一个是三角形或四边形或五边形7.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证∠BAP <∠CAP .用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP8.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°.正确顺序的序号排列为________.解析:由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.答案:③①②9.已知a ≥-1,求证以下三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数解.证明:假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧--4a +<0--4a2<0+4×2a<0⇒错误!⇒-32<a <-1,这与已知 a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.10.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.证明:假设存在非零实数x ,y 使得等式1x +1y =1x +y成立.于是有y (x +y )+x (x +y )=xy ,即x 2+y 2+xy =0, 即(x +y 2)2+34y 2=0.由y ≠0,得34y 2>0.又(x +y 2)2≥0,所以(x +y 2)2+34y 2>0.与x 2+y 2+xy =0矛盾,故原命题成立.[B 组 能力提升]1.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖,有人走访了这四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁解析:若甲获奖,则甲、乙、丙、丁四位歌手说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.答案:C2.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不确定 解析:分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.答案:B3.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n .答案:04.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:据题目要求及解题步骤,因为a 1-1,a 2-2,…,a 7-7均为奇数,所以(a 1-1)+(a 2-2)+…+(a 7-7)也为奇数. 即(a 1+a 2+…+a 7)-(1+2+…+7)为奇数.又因为a 1,a 2,…,a 7是1,2,…,7的一个排列, 所以a 1+a 2+…+a 7=1+2+…+7,故上式为0.所以奇数=(a 1-1)+(a 2-2)+…+(a 7-7) =(a 1+a 2+…+a 7)-(1+2+…+7)=0. 答案:(a 1-1)+(a 2-2)+…+(a 7-7)(a 1+a 2+...+a 7)-(1+2+ (7)5.已知a ,b ,c 都是小于1的正数,求证:(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14.∵a ,b ,c 都是小于1的正数,∴->12,->12,->12,∴-+-+->32.(*)又∵-≤1-a +b2,-≤1-b +c2,-≤1-c +a2, ∴-+-+-≤1-a +b 2+1-b +c 2+1-c +a2=3-+b +++b +c2=32(当且仅当1-a =b,1-b =c,1-c =a ,即a =b =c =12时,等号成立),与(*)式矛盾.∴假设不成立,原命题成立,故(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.6.求证:抛物线上任取四个不同点所组成的四边形不可能是平行四边形.证明:如图,设抛物线方程为y 2=2px (p >0),在抛物线上任取四个不同点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 2i =2px i (i =1,2,3,4),于是直线AB 的斜率为k AB =y2-y1x2-x1=2py1+y2,同理:k BC =2p y3+y2,k CD =2p y4+y3,k DA =2py1+y4.假设四边形ABCD 为平行四边形,则有k AB =k CD ,k BC =k DA ,即有错误!①-②得y 1-y 3=y 3-y 1, ∴y 1=y 3,同理y 2=y 4,则x 1=y212p =y232p =x 3,同理x 2=x 4,由错误!,错误!.显然A ,C 重合,B ,D 重合.这与A ,B ,C ,D 为抛物线上任意四点矛盾,故假设不成立.∴四边形ABCD 不可能是平行四边形.。