第二章 推理与证明(B)
- 格式:doc
- 大小:103.00 KB
- 文档页数:17
第二章推理与证明知识系统整合规律方法收藏1.图形中的归纳推理问题主要涉及某些固定图形的个数,所以常常需要转化成数列问题来求解,常用的思路有两种:(1)直接查个数,找到变化规律后再猜想;(2)观察图形的变化规律.2.探索性问题是数学中的一类重要问题,如探讨数列的通项、前n 项和、立体几何、解析几何中的性质等,在处理时,先采用合情推理猜想、再采用演绎推理的论证方法.3.对于较为复杂的数学命题,不论是从“已知”推向“结论”,还是由“结论”靠向“已知”,都有一个比较长的过程,单靠分析或综合显得较为困难.为保证探索方向准确且过程快捷,人们又常常把分析与综合两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.把分析法与综合法两者结合起来进行思考,寻求问题的解答途径的方式就是人们通常所说的分析综合法,也就是常说的“两路夹攻,一攻就通”的证明思路.4.解决数学中的证明问题,既要掌握常用的证明方法的思维过程、特点,又要有牢固的数学基础知识.另外,还应掌握证明的一些常用方法与技巧,证明常用的方法与技巧有以下几种:(1)换元法.换元法是结构较为复杂且量与量之间的关系不甚明了的命题,通过恰当地引入新变量,代换原命题中的部分式子,简化原有结果,使其转化为便于研究的形式.常见的有代数换元与三角换元.在应用换元法时,要注意新变量的取值范围,即代换的等价性.换元法步骤:①设元(或构造元)――→ 转化②求解――→ 等量③回代――→ 等价原则④检验(2)放缩法.放缩法常用于证明不等式.欲证A ≥B ,可通过适当放大或缩小,借助一个或多个中间量使得B ≤B 1,B 1≤B 2,…,B i ≤A 或A ≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,以达到证明的目的,这种方法叫放缩法.应用放缩法时,放缩目标必须确定,而且要恰到好处,目标往往要从证明的结论考察,常用的放缩方法有增项、减项或利用分式的性质、不等式性质、已知不等式、函数的性质等.其放缩技巧主要有以下几种:①添加或舍去一些项,如: a 2+1>|a |;n n +1>n ;②将分子或分母放大(或缩小) 当a ,b ,c >0时,a b +c +b a +c +ca +b >a a +b +c +b a +b +c +ca +b +c;③利用基本不等式,如:lg 3·lg 5<⎝ ⎛⎭⎪⎫lg 3+lg 522=lg 15<lg 16=lg 4;④利用常用结论 ⅰ.1k的放缩:2k +k +1<22k <2k +k -1;ⅱ.1k 2的放缩(a):1kk +1<1k 2<1k k -1(程度大); ⅲ.1k 2的放缩(b):1k 2<1k 2-1=1k +1k -1=12⎝ ⎛⎭⎪⎫1k -1-1k +1(程度小);ⅳ.1k2的放缩(c):1k 2<44k 2-1=2⎝ ⎛⎭⎪⎫12k -1-12k +1(程度更小);ⅴ.分式放缩还可利用真(假)分数的性质:b a >b +m a +m (b >a >0,m >0)和b a <b +ma +m(a >b >0,m >0). (3)判别式法.判别式法是根据已知或构造出来的一元二次方程、一元二次不等式、二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出结论的方法.利用判别式法证明时,应先将问题转化为与二次三项式相关的问题,再利用判别式法求解,要注意二次项系数是否为零.此外还有导数法、添项法、几何法、构造函数法等. 5.用数学归纳法证题的步骤(1)证明当n 取第一个值n 0(例如n 0=1或n 0=2)时结论正确.(2)假设当n =k (k ∈N *,k ≥n 0)时结论正确,证明当n =k +1时结论也正确. 在完成了这两个步骤以后,就可以断定结论对于从n 0开始的所有正整数n 都正确. 应用数学归纳法证明时要注意以下几点:(1)步骤要完整、规范,即“两步一结论”缺一不可,且第二步证明一定要用到归纳假设. (2)n 的第一个值n 0应根据具体问题来确定.(3)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,并不一定都是证明n =k +1时结论也正确.如用数学归纳法证明“当n 为正偶数时x n-y n能被x +y 整除”,第一步应验证n =2时,命题成立;第二步归纳假设成立应写成假设当n =k 时命题成立,则当n =k +2时,命题也成立.(4)用数学归纳法可证明有关正整数的问题,但并不是所有的正整数问题都可以用数学归纳法证明的.例如:用数学归纳法证明⎝⎛⎭⎪⎫1+1n (n ∈N *)的单调性就难以实现.一般来说,从n =k 时的情形过渡到n =k +1的情形时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.做题时要注意具体问题具体分析.学科思想培优一、归纳推理和类比推理的应用例1 古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,图(2)中的1,4,9,16,…,这样的数称为正方形数.下列数中既是三角形数又是正方形数的是( )A.289 B .1024 C .1225 D .1378[解析] 由图形可得三角形数构成的数列通项a n =n2(n +1),正方形数构成的数列通项b n =n 2,则由b n =n 2(n ∈N *)可排除D.又由a n =n 2(n +1),当a n =289时,即验证是否存在n ∈N *,使得n (n +1)=578,经计算n 不存在;同理,依次验证,有1225×2=49×50,且352=1225,故选C.[答案] C 拓展提升解决此类题目时,需要细心观察图形,寻找每一项与序号之间的关系,同时还要联系相关的知识,注意抽象出的是数列的哪类公式.例2 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么你类比得到的结论是________.[解析] 在进行类比推理时,应该注意平面图形中的点、线分别与空间图形中的线、面类比;平面图形的长度、面积分别与空间图形中的面积、体积类比,结论易得.[答案] S 21+S 22+S 23=S 24 拓展提升类比推理应从具体问题出发,通过观察、分析、类比、归纳而得出结论.通常情况下,平面图形的边长、面积往往类比空间几何体的面积、体积.二、演绎推理的应用例3 将下列演绎推理写成三段论的形式.(1)所有偶数都能被2整除,0 是偶数,所以0能被2整除;(2)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数; (3)通项公式a n =2n +3的数列{a n }为等差数列; (4)函数f (x )=x 3是奇函数.[解] (1)所有偶数都能被2整除,(大前提) 0是偶数,(小前提) 0能被2整除.(结论)(2)循环小数是有理数,(大前提)0.332·是循环小数,(小前提)0.332·是有理数.(结论)(3)数列{a n }中,如果当n ≥2时,a n -a n -1为常数,则{a n }为等差数列,(大前提) 通项公式a n =2n +3时,若n ≥2,则a n -a n -1=2n +3-[2(n -1)+3]=2(常数),(小前提)通项公式a n =2n +3表示的数列{a n }为等差数列.(结论)(4)对于定义域关于原点对称的函数f (x ),若f (-x )=-f (x ),则函数f (x )是奇函数,(大前提)函数f (x )=x 3的定义域关于原点对称,f (-x )=(-x )3=-x 3=-f (x ),即f (-x )=-f (x ),(小前提)所以函数f (x )=x 3是奇函数.(结论) 拓展提升用三段论写推理过程时,关键是明确大、小前提;有时可省略小前提,有时甚至也可大前提与小前提同时省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.三、直接证明例4 设a ,b ,c 为三角形三边,面积S =12(a +b +c ),且S 2=2ab ,试证:S <2a .[证明] (分析法)要证S <2a ,由于S 2=2ab ,即2a =S 2b ,所以只需证S <S 2b,即证b <S ,因为S =12(a +b +c ),所以只需证b <12(a +b +c ),即证b <a +c ,由于a ,b ,c 为三角形三边,所以上式显然成立,于是原命题成立.(综合法)因为a ,b ,c 为三角形三边,所以a +c >b ,所以a +b +c >2b , 又因为S =12(a +b +c ),即a +b +c =2S ,所以2S >2b ,所以S ·S >b ·S ,由于S 2=2ab ,所以2ab >bS ,即2a >S ,所以原命题得证. 拓展提升知识链之间的等价联系是产生一题多解的本质所在,掌握了这个“法宝”,必然会促进解题能力的逐步提高.四、反证法例5 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾, ∴假设不成立,故{a n +1}不是等比数列. 拓展提升当命题结论中出现“至多”“至少”“不可能”“都不”“不是”等否定性词语时,常用反证法.对于“否定”型命题,从正面证明需要证明的情况太多,直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆.五、数学归纳法例6 用数学归纳法证明:对一切n∈N *,1+122+132+…+1n 2≥3n 2n +1.[证明] (1)当n =1时,左边=1, 右边=3×12×1+1=1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立, 即1+122+132+…+1k 2≥3k 2k +1,则当n =k +1时,要证1+122+132+…+1k 2+1k +12≥3k +12k +1+1,只需证3k 2k +1+1k +12≥3k +12k +3.因为3k +12k +3-⎣⎢⎡⎦⎥⎤3k 2k +1+1k +12=34k +12-1-1k +12=1-k +12k +12[4k +12-1]=-k k +2k +124k 2+8k +3≤0,所以3k 2k +1+1k +12≥3k +12k +3,即1+122+132+…+1k 2+1k +12≥3k +12k +1+1,所以当n =k +1时不等式成立.由(1)(2)知,不等式对一切n ∈N *都成立. 拓展提升本题在知道结果以后,执果索因,用分析法进行证明.在解题过程中数学归纳法通常与其他方法综合运用,如比较法、放缩法、配凑法、分析法和综合法.例7 已知点的序列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1,x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此猜想数列{a n }的通项公式,并加以证明. [解] (1)当n ≥3时,x n =x n -1+x n -22;(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-a 2,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=-12⎝ ⎛⎭⎪⎫-12a =14a ,由此猜想a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *),用数学归纳法证明如下:①当n =1时,a 1=x 2-x 1=a =⎝ ⎛⎭⎪⎫-120a ,猜想成立;②假设当n =k (n ∈N *)时,猜想成立,即a k =⎝ ⎛⎭⎪⎫-12k -1a 成立,那么,a k +1=x k +2-x k +1=x k +1+x k2-x k +1=-12(x k +1-x k )=-12a k =-12⎝ ⎛⎭⎪⎫-12k -1a=⎝ ⎛⎭⎪⎫-12(k +1)-1a ,即当n =k +1时猜想也成立. 根据①和②,可知{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *).拓展提升由已知求出数列的前n项,提出猜想,然后再用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式的方法,证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1之间的关系,从而为数学归纳法的实施做了必要的准备.。
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
2019-2020年高中数学第二章推理与证明测评B 新人教A版选修2-2 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:因为至少有一个的反面为一个也没有,所以要做的假设是方程x3+ax+b=0没有实根.答案:A2.(xx·北京高考)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人解析:用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.答案:B3.(xx·湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C.D.解析:由题意可知:L=2πr,即r=,圆锥体积V=Sh=πr2h=π·h=L2h≈L2h,故,π≈,故选B.答案:B4.(xx·广东高考)设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:如图,在正方体A1B1C1D1-ABCD中,对于A,设l为AA1,平面B1BCC1,平面DCC1D1为α,β.A1A∥平面B1BCC1,A1A∥平面DCC1D1,而平面B1BCC1∩平面DCC1D1=C1C;对于C,设l为A1A,平面ABCD为α,平面DCC1D1为β.A1A⊥平面ABCD,A1A∥平面DCC1D1,而平面ABCD∩平面DCC1D1=DC;对于D,设平面A1ABB1为α,平面ABCD为β,直线l为D1C1,平面A1ABB1⊥平面ABCD,D1C1∥平面A1ABB1,而D1C1∥平面ABCD.故A,C,D都是错误的.而对于B,根据垂直于同一直线的两平面平行,知B正确.答案:B5.(xx·辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+C.(b-a3)=0D.|b-a3|+=0解析:若∠OBA为直角,则=0,即a2+(a3-b)·a3=0,又a≠0,故b=a3+;若∠OAB为直角时,则=0,即b(a3-b)=0,得b=a3;若∠AOB为直角,则不可能.所以b-a3-=0或b-a3=0,故选C.答案:C6.(xx·浙江高考)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a,b,c,d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2解析:由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab≥4知,正数a,b中至少有一个大于等于2.由c+d≤4知,c,d中至少有一个小于等于2,故选C.答案:C7.(xx·陕西高考)设[x]表示不大于x的最大整数,则对任意实数x,有()A.[-x]=-[x]B.=[x]C.[2x]=2[x]D.[x]+=[2x]解析:令x=1.1,[-1.1]=-2,而-[1.1]=-1,所以A错;令x=-=0,=-1,所以B错;令x=0.5,[2x]=1,2[x]=0,所以C错;故选D.答案:D8.(xx·四川高考)设函数f(x)=(a∈R,e为自然对数的底数),若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是()A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]解析:当a=0时,f(x)=为增函数,∴b∈[0,1]时,f(b)∈[1,].∴f(f(b))≥>1.∴不存在b∈[0,1]使f(f(b))=b成立,故D错;当a=e+1时,f(x)=,当b∈[0,1]时,只有b=1时,f(x)才有意义,而f(1)=0,∴f(f(1))=f(0),显然无意义,故B,C错.故选A.答案:A9.(xx·浙江高考)设a>0,b>0,e是自然对数的底数,()A.若e a+2a=e b+3b,则a>bB.若e a+2a=e b+3b,则a<bC.若e a-2a=e b-3b,则a>bD.若e a-2a=e b-3b,则a<b解析:考查函数y=e x+2x为单调增函数,若e a+2a=e b+2b,则a=b;若e a+2a=e b+3b,∴a>b.故选A.答案:A10.(xx·江西高考)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为()A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n(n∈N*)的不同整数解(x,y)的个数为4n,所以|x|+|y|=20的不同整数解(x,y)的个数为80,故选B.答案:B第Ⅱ卷(非选择题共70分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.(xx·陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱5 6 9五棱锥6 6 10立方体6 8 12猜想一般凸多面体中F,V,E所满足的等式是.解析:因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案:F+V-E=212.(xx·课标全国Ⅰ高考)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.解析:根据甲、乙、丙说的可列表得A B C甲√×√乙√××丙√答案:A13.(xx·山东高考)观察下列各式:=40;=41;=42;=43;……照此规律,当n∈N*时,+…+=.解析:观察各式有如下规律:等号左侧第n个式子有n项,且上标分别为0,1,2,…,n-1,第n行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n个式子为+…+=4n-1.答案:4n-114.(xx·陕西高考)已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N*,则f2 014(x)的表达式为.解析:依题意,f1(x)=f(x)=,f2(x)=f(f1(x))=f,f3(x)=f(f2(x))=f,…,由此可猜测f n(x)=,故f2 014(x)=.答案:15.(xx·福建高考)一个二元码是由0和1组成的数字串x1x2…x n(n∈N*),其中x k(k=1,2,…,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算 义为:00=0,01=1,10=1,11=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于.解析:若1≤k≤3,则x4=1,x5=1,x6=0,x7=1,不满足x4x5x6x7=0;若k=4,则二元码为1100101,不满足x1x3x5x7=0;若k=5,则二元码为1101001,满足方程组,故k=5.答案:5三、解答题(本大题共5小题,共50分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题8分)(xx·安徽高考)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=,证明:T n≥.(1)解:y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-.(2)证明:由题设和(1)中的计算结果知T n=.当n=1时,T1=.当n≥2时,因为,所以T n>×…×.综上可得对任意的n∈N*,均有T n≥.17.(本小题8分)(xx·山东高考)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{a n}的通项公式;(2)设b n=,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解:(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知b n==n(n+1),所以T n=-1×2+2×3-3×4+…+(-1)n n·(n+1).因为b n+1-b n=2(n+1),可得当n为偶数时,T n=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+…+2n=,当n为奇数时,T n=T n-1+(-b n)=-n(n+1)=-.所以T n=18.(本小题10分)(xx·北京高考)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)解:因为AA1=AC=2,BC=1,AB⊥BC,所以AB=.所以三棱锥E-ABC的体积V=S△ABC·AA1=×1×2=.19.(本小题12分)(xx·江苏高考)已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n}.令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解:(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时,f(6)=6+2+=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2++3=(k+1)+2+,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2++2=(k+1)+2+,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2++1=(k+1)+2+,结论成立.综上所述,结论对满足n≥6的自然数n均成立.20.(本小题12分)(xx·陕西高考)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F n'(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=.(2)解法一:由假设,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时,f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).解法二:由题设,f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时,f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时,f2(x)-g2(x)=-(1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h k'(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以,当0<x<1时,h k'(x)<0,h k(x)在(0,1)上递减;当x>1时,h k'(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1.则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+-x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m k'(x)=·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m k'(x)<0;若x>1,x n-k+1>1,m k'(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增, 所以m k(x)>m k(1)=0.所以当m>0且m≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).2019-2020年高中数学第二章 推理与证明章末小结 新人教A 版选修1-2合情推理与演绎推理运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳、类比的方法进行探索,提出猜想;最后用演绎推理的方法进行验证.观察下图中各正方形图案,每条边上有n (n ≥2)个点,第n 个图案中圆点的总数是S n .••••, • • •• •• • •, • • • •• •• •• • • •,… n =2,S 2=4;n =3,S 3=8;n =4,S 4=12;…,按此规律,推出S n 与n 的关系式为________.解析:依图的构造规律可以看出:S 2=2×4-4, S 3=3×4-4,S 4=4×4-4(正方形四个顶点重复计算一次,应减去).…猜想:S n =4n -4(n ≥2,n ∈N *).答案:S n =4n -4(n ≥2,n ∈N *)若数列{a n }是等比数列,且a n >0,则有数列b n =na 1·a 2·…·a n (n ∈N *)也为等比数列,类比上述性质,相应地,数列{c n }是等差数列,则有d n =________也是等差数列.解析:类比猜想可得d n =c 1+c 2+…+c nn也成等差数列,若设等差数列{c n }的公差为x ,则d n =c 1+c 2+…+c nn=nc 1+n (n -1)2xn=c 1+(n -1)·x2.可见{d n }是一个以c 1为首项,x2为公差的等差数列,故猜想是正确的.答案:c 1+c 2+…+c nn已知函数f (x )=x 13-x -135,g (x )=x 13+x -135.(1)证明f (x )是奇函数,并求f (x )的单调区间;(2)分别计算f (4)-5f (2)·g (2)和f (9)-5f (3)·g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明.(1)证明:函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又f (-x )=(-x )13-(-x )-135=-x 13-x -135=-f (x ),∴f (x )是奇函数.任取x 1,x 2∈(0,+∞),设x 1<x 2,f (x 1)-f (x 2)=x 131-x -1315-x 132-x -1325=15(x 131-x 132)⎝⎛⎭⎪⎪⎫1+1x 131·x 132. ∵x 131-x 132<0,1+1x 131·x 132>0,∴f (x 1)-f (x 2)<0.∴f (x )在(0,+∞)上单调递增.∴f (x )的单调递增区间为(-∞,0)和(0,+∞).(2)解析:计算得f (4)-5f (2)·g (2)=0,f (9)-5f (3)·g (3)=0. 由此概括出对所有不等于零的实数x 有f (x 2)-5f (x )·g (x )=0.∵f (x 2)-5f (x )·g (x )=x 23-x -235-5·x 13-x -135·x 13+x -135=15(x 23-x -23)-15(x 23-x -23)=0, ∴该等式成立.点评:问题(1)的大前提为函数奇偶性和单调性的定义.问题(2)实际上是合情推理在高考中的体现,有一定的创新性.►变式训练1.已知数列{a n }的相邻两项a 2k -1,a 2k 是关于x 的方程x 2-(3k +2k )x +3k ·2k=0的两个根且a 2k -1≤a 2k (k =1,2,3,…).(1)求a 1,a 3,a 5,a 7及a 2n (n ≥4),不必证明; (2)求数列{a n }的前2n 项和S 2n .解析:(1)方程x 2-(3k +2k )x +3k ·2k =0的两根为x 1=3k ,x 2=2k.当k =1时,x 1=3,x 2=2,∴a 1=2; 当k =2时,x 1=6,x 2=4,∴a 3=4; 当k =3时,x 1=9,x 2=8,∴a 5=8; 当k =4时,x 1=12,x 2=16,∴a 7=12. ∵当n ≥4时,2n>3n ,∴a 2n =2n(n ≥4).(2)S 2n =a 1+a 2+…+a 2n=(3+6+9+…+3n )+(2+22+ (2))=3n 2+3n 2+2n +1-2.直接证明综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等.应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法综合起来使用.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明:证法一(综合法) ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4, ∴1a +1b +1ab≥8. 证法二(分析法)∵a >0,b >0,a +b =1,∴要证1a +1b +1ab≥8, 只需证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 即证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8, 即证1a +1b≥4,即证a +b a +a +b b≥4, 即证b a +a b ≥2. 由基本不等式可知,当a >0,b >0时,b a +a b≥2成立,∴原不等式成立.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .证明:(1)设AC 与BD 交于点G .∵EF ∥AG ,且EF =1,AG =12AC =1, ∴四边形AGEF 为平行四边形.∴AF ∥EG .∵EG ⊂平面BDE ,AF ⊄平面BDE ,∴AF ∥平面BDE .(2)连接FG ,∵EF ∥CG ,EF =CG =1,且CE =1,∴四边形CEFG 为菱形,∴CF ⊥EG .∵四边形ABCD 为正方形,∴BD ⊥AC .又∵平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,∴BD ⊥平面ACEF ,∴CF ⊥BD .又BD ∩EG =G .∴CF ⊥平面BDE .►变式训练2.在等差数列{a n }中,首项a 1=1,数列{b n }满足b n =⎝ ⎛⎭⎪⎫12a n ,且b 1·b 2·b 3=164. (1)求数列{a n }的通项公式;(2)求证:a 1b 1+a 2b 2+…+a n b n <2.(1)解析:设等差数列{a n }的公差为d ,因为a 1=1,b n =⎝ ⎛⎭⎪⎫12an , 所以b 1=12,b 2=⎝ ⎛⎭⎪⎫121+d ,b 3=⎝ ⎛⎭⎪⎫121+2d . 由b 1b 2b 3=164,解得d =1, 所以a n =1+(n -1)·1=n . (2)证明:由(1)得b n =⎝ ⎛⎭⎪⎫12n . 设T n =a 1b 1+a 2b 2+…+a n b n =1×12+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+n ·⎝ ⎛⎭⎪⎫12n ,① 则12T n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+3×⎝ ⎛⎭⎪⎫124+…+n ·⎝ ⎛⎭⎪⎫12n +1.② ①-②得12T n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1. 所以T n =2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-2n ·⎝ ⎛⎭⎪⎫12n +1 =2-12n -1-n 2n , 又因为2-12n -1-n2n <2,所以a 1b 1+a 2b 2+…+a n b n <2.点评:本题考查了等差数列的性质以及利用综合法证题的过程.反证法反证法的理论基础是互为逆否命题的等价性,从逻辑的角度看,命题:“若p 则q ”的否定是“若p 则¬q ”由此进行推理,如果发生矛盾,那么就说明“若p 则¬q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要。
第二章 推理与证明(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列推理过程是类比推理的是( )A .人们通过大量试验得出掷硬币出现正面的概率为12B .科学家通过研究老鹰的眼睛发明了电子鹰眼C .通过检测溶液的pH 值得出溶液的酸碱性D .由周期函数的定义判断某函数是否为周期函数2.下列有关三段论推理“自然数都是整数,4是自然数,所以4是整数”的说法正确的是( )A .推理正确B .推理形式不正确C .大前提错误D .小前提错误3.勾股定理:在直角边长为a 、b ,斜边长为c 的直角三角形中,有a 2+b 2=c 2.类比勾股定理可得,在长、宽、高分别为p 、q 、r ,体对角线长为d 的长方体中,有( )A .p +q +r =dB .p 2+q 2+r 2=d 2C .p 3+q 3+r 3=d 3D .p 2+q 2+r 2+pq +pr +qr =d 24.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出一般式子为( )A .1+122+132+…+1n 2<12n -1 (n ≥2)B .1+122+132+…+1n 2<2n +1n (n ≥2)C .1+122+132+…+1n 2<2n -1n (n ≥2)D .1+122+132+…+1n 2<2n2n +1(n ≥2)5.若a ,b ,c 均为实数,则下面四个结论均是正确的:①ab =ba ;②(ab )c =a (bc );③若ab =bc ,b ≠0,则a -c =0;④若ab =0,则a =0或b =0.对向量a ,b ,c ,用类比的思想可得到以下四个结论: ①a·b =b·a ; ②(a·b )c =a (b·c ); ③若a·b =b·c ,b ≠0,则a =c ; ④若a·b =0,则a =0或b =0. 其中结论正确的有( ) A .0个 B .1个 C .2个 D .3个6.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 2 010等于( )A .0B .- 3C . 3D .327.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )A .各正三角形内任一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点8.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c9.下列三句话按三段论的模式排列顺序正确的是( ) ①2 006能被2整除;②一切偶数都能被2整除; ③2 006是偶数. A .①②③ B .②①③ C .②③① D .③②① 10.有以下结论:①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.下列说法中正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确11.定义A *B 、B *C 、C *D 、D *B 分别对应下列图形,那么下面的图形中,可以表示A *D ,A *C 的分别是( )A .(1),(2)B .(2),(3)C .(2),(4)D .(1),(4)12.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于零B .一定等于零C .一定小于零D .正负都有可能二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC 中,D 为边BC 的中点,则AD →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:________________________________.14.对于“求证函数f (x )=-x 3在R 上是减函数”,用“三段论”可表示为:大前提是“对于定义域为D 的函数f (x ),若对任意x 1,x 2∈D 且x 2-x 1>0,有f (x 2)-f (x 1)<0,则函数f (x )在D 上是减函数”,小前提是“__________________________”,结论是“f (x )=-x 3在R 上是减函数”.15.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,55,…这些数叫做三角形数,这是因为这些数目的点可以排成正三角形(如图所示),则三角形数的一般表达式f (n )=__________.16.下面的四个不等式: ①a 2+b 2+c 2≥ab +bc +ca ;②a (1-a )≤14;③a b +ba≥2;④(a 2+b 2)·(c 2+d 2)≥(ac +bd )2. 其中不成立的有________个.三、解答题(本大题共6小题,共70分) 17.(10分)设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.18.(12分)已知函数f (x )=lg ⎝⎛⎭⎫1x -1,x ∈⎝⎛⎭⎫0,12.若x 1,x 2∈⎝⎛⎭⎫0,12且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.19.(12分)已知a >0,b >0,a +b =1,求证:a +12+b +12≤2.20.(12分) 如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB =2a,CD=a,F是BE的中点.(1)求证:DF∥平面ABC;(2)求证:AF⊥BD.21.(12分)设二次函数f(x)=ax2+bx+c(a≠0)中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:方程f(x)=0无整数根.22.(12分)观察下表:1,2,34,5,6,78,9,10,11,12,13,14,15,…问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 008是第几行的第几个数?第二章 推理与证明(B)答案1.B2.A [三段论中的大前提,小前提以及推理形式都是正确的,所以结论正确.] 3.B4.C [由合情推理可归纳出1+122+132+…+1n 2<2n -1n(n ≥2).]5.B [利用类比思想结合向量的定义及性质,特别是向量的数量积的定义可知①正确,②③④不正确.]6.C [a 2=0-30+1=-3,a 3=-3-3-3·3+1=3,a 4=0,所以此数列具有周期性,0,-3,3依次重复出现.因为2 010=3×670,所以a 2 010= 3.]7.C [正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.故选C.]8.A [分别令n =1,2,3,得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.]9.C 10.D [用反证法证题时一定要将对立面找全.在(1)中应假设p +q >2.故(1)的假设是错误的,而(2)的假设是正确的,故选D.]11.C [由定义中的图形可知A 对应|,B 对应□(大框),C 对应—,D 对应▭(小框),故A *D 应为 |▭,A *C 应表示+.故选C.]12.A [f (x )=x 3+x 是奇函数,且在R 上是增函数,由a +b >0得a >-b , 所以f (a )>f (-b ),即f (a )+f (b )>0, 同理f (a )+f (c )>0,f (b )+f (c )>0, 所以f (a )+f (b )+f (c )>0.]13.在四面体A —BCD 中,G 为△BCD 的重心, 则AG →=13(AB →+AC →+AD →)14.对于任意x 1,x 2∈R 且x 2-x 1>0,有f (x 2)-f (x 1)=-x 32+x 31=-(x 2-x 1)(x 22+x 1x 2+x 21)=-(x 2-x 1)·⎣⎡⎦⎤⎝⎛⎭⎫x 2+x 122+34x 21<0 15.n (n +1)2解析 当n =1时,1=1×22;当n =2时,3=2×32;当n =3时,6=3×42;当n =4时,10=4×52;…,猜想:f (n )=n (n +1)2.16.1解析 由a 2+b 2+c 2-(ab +bc +ca ) =12[2a 2+2b 2+2c 2-2ab -2bc -2ca ] =12[(a -b )2+(b -c )2+(c -a )2]≥0, 故①正确.由14-a (1-a )=14-a +a 2=⎝⎛⎭⎫a -122≥0, 故②正确. (a 2+b 2)·(c 2+d 2)-(ac +bd )2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-2acbd -b 2d 2 =a 2d 2+b 2c 2-2abcd =(ad -bc )2≥0,故④正确. ∵a b +b a ≥2或a b +ba≤-2,∴③不正确. 17.证明 假设|f (1)|<12,|f (2)|<12,|f (3)|<12,于是有-12<1+a +b <12 ①-12<4+2a +b <12 ② -12<9+3a +b <12③ ①+③,得-1<10+4a +2b <1, 所以-3<8+4a +2b <-1,所以-32<4+2a +b <-12.由②知-12<4+2a +b <12,矛盾,所以假设不成立,即|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.18.证明 要证原不等式成立,只需证明 ⎝⎛⎭⎫1x 1-1⎝⎛⎭⎫1x 2-1>⎝⎛⎭⎫2x 1+x 2-12, 事实上,∵0<x 1,x 2<12,x 1≠x 2,∴⎝⎛⎭⎫1x 1-1⎝⎛⎭⎫1x 2-1-⎝⎛⎭⎫2x 1+x 2-12=1x 1x 2-1x 1-1x 2-4(x 1+x 2)2+4x 1+x 2=(x 1-x 2)2(1-x 1-x 2)x 1x 2(x 1+x 2)2>0.∴⎝⎛⎭⎫1x 1-1⎝⎛⎭⎫1x 2-1>⎝⎛⎭⎫2x 1+x 2-12, 即有lg ⎣⎡⎦⎤⎝⎛⎭⎫1x 1-1⎝⎛⎭⎫1x 2-1>lg ⎝⎛⎭⎫2x 1+x 2-12, 故12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.19.证明 ∵1=a +b ≥2ab ,∴ab ≤14.∴12(a +b )+ab +14≤1. ∴⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1. 从而有2+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4. 即⎝⎛⎭⎫a +12+⎝⎛⎭⎫b +12+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4. ∴⎝⎛⎭⎫a +12+b +122≤4.∴a +12+b +12≤2. 20.证明 (1)取AB 的中点G ,连接FG ,CG ,可得FG ∥AE ,FG =12AE ,又CD ⊥平面ABC ,AE ⊥平面ABC ,∴CD ∥AE ,CD =12AE ,∴FG ∥CD ,FG =CD . 又∵FG ⊥平面ABC , ∴四边形CDFG 是矩形, DF ∥CG ,CG ⊂平面ABC , DF ⊄平面ABC , ∴DF ∥平面ABC .(2)Rt △ABE 中,AE =2a ,AB =2a ,F 为BE 的中点, ∴AF ⊥BE ,∵△ABC 是正三角形, ∴CG ⊥AB ,∴DF ⊥AB , 又DF ⊥FG ,FG ∩AB =G , ∴DF ⊥平面ABE ,DF ⊥AF , 又∵DF ∩BE =F ,∴AF ⊥平面BDF , 又BD ⊂平面BDF ,∴AF ⊥BD .21.证明 假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0.①因为f (0)=c ,f (1)=a +b +c 均为奇数, 所以a +b 必为偶数,当k 为偶数时,令k =2n (n ∈Z ),则ak 2+bk +c =4n 2a +2nb +c =2n (2na +b )+c 必为奇数,与①式矛盾; 当k 为奇数时,令k =2n +1 (n ∈Z ),则ak 2+bk +c =(2n +1)(2na +a +b )+c 为一奇数与一偶数乘积加上一个奇数,必为奇数,也与①式矛盾,故假设不成立.综上可知方程f (x )=0无整数根.22.解 (1)由表知,第二行起,每行的第一个数为偶数,所以第n +1行的第一个数为2n ,所以第n 行的最后一个数为2n -1.(2)由(1)知第n -1行的最后一个数为2n -1-1,第n 行的第一个数为2n -1,第n 行的最后一个数为2n -1.又由观察知,每行数字的个数与这一行的第一个数相同,所以由等差数列求和公式得,S n =2n -1(2n -1+2n -1)2=22n -3+22n -2-2n -2.(3)因为210=1 024,211=2 048,又第11行最后一个数为211-1=2 047,所以2 008是在第11行中,由等差数列的通项公式得,2 008=1 024+(n -1)·1,所以n =985,所以2 008是第11行的第985个数.。
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。
2019-2020学年人教A 版数学选修2-2第二章 推理与证明测试B 卷(提升)1、下列表述正确的是( ) ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③类比推理是由特殊到一般的推理; ④演绎推理是由一般到特殊的推理; ⑤类比推理是由特殊到特殊的推理. A .①⑤ B .②③④ C .②③⑤ D .①④⑤2、由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn nm =”类比得到“a b b a ⋅=⋅rrr r”;②“()m n t mt nt +=+”类比得到“()a b c a c b c +⋅=⋅+⋅r rr r r r r ”;③“()()m n t m n t ⋅=⋅”类比得到“()()a b c a b c⋅=⋅r r r r r r”.以上式子中,类比得到的结论正确的个数是( )A.0B.1C.2D.33、用反证法证明命题“若220a b +=,则,a b 全为()0,a b R ∈”,其反设正确的是( )A. ,a b 至少有一个不为0B. ,a b 至少有一个为0C. ,a b 全不为0D. ,a b 中只有一个为04、若大前提: ,R a b+∈,a b +≥小前提: 1x x +≥结论:12x x+≥,以上推理过程中的错误为( )A.大前提B.小前提C.结论D.无错误5、观察下列各式02311248248112482728112483000811248330088⨯⨯⨯⨯=,=,=,=,451124836309681124839940648⨯⨯⋯=,=,,则9911248⨯的十位数是( )A .2B .4C .6D .86、命题“任意角θ,44cos sin cos2θθθ-=”的证明:“44222222cos sin (cos sin )(cos sin )cos sin cos2θθθθθθθθθ-=-+=-=”应用了( ) A.分析法B.综合法C.综合法、分析法结合使用D.间接证法7、若等差数列{}n a 的公差为d,前n 项和为n S ,则数列{}n S n为等差数列,公差为2d .类似地,若各项均为正数的等比数列{}n b 的公比为q,前n 项积为n T ,则等比数列的公比为( ) A.2qB.2q8、在中国足球超级联赛某一赛季的收官阶段中,广州恒大淘宝、北京中赫国安、上海上港、东鲁能泰山分别积了59分、58分、56分、50分,四家俱乐部都有机会夺冠A ,B ,C 三名球迷依据四支球队之前比赛中的表现,结合自己的判断,对本次联赛的冠军进行了如下猜测:A 猜测冠军是北京中赫国安或山东鲁能泰山;B 猜测冠军一定不是上海上港和山东鲁能泰山;C 猜测冠军是广州恒大淘宝或北京中赫国安.联赛结束后,发现A ,B ,C 三人中只有一人的猜测是正确的,则冠军是( )A.广州恒大淘宝B.北京中赫国安C.上海上港D.山东鲁能泰山9、设x 、y 、z 都是实数, 1a x y =+,1b y z =+,1c z x=+,则,,a b c 三个数( ) A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2D.都大于210、用数学归纳法证明4221232n n n +++++=L ,则当1n k =+时,左端应在n k =的基础上加上( )A.21k +B.2(1)k +C.222(1)(2)(1)kk k ++++++LD.42(1)(1)2k k +++11、设实数,,a b c 满足1a b c ++=,则,,a b c 中至少有一个数不小于__________.12成立,则,a b 应满足的条件是____________. 13、6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级.灾害发生后,有甲、乙、丙、丁4个轻型救援队从A ,B ,C ,D 四个不同的方向前往灾区. 已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是C 方向,也不是D 方向; (2)乙轻型救援队所在方向不是A 方向,也不是B 方向; (3)丙轻型救援队所在方向不是A 方向,也不是B 方向; (4)丁轻型救援队所在方向不是A 方向,也不是D 方向;此外还可确定:如果丙所在方向不是D 方向,那么甲所在方向就不是A 方向,有下列判断: ①甲所在方向是B 方向; ②乙所在方向是D 方向; ③丙所在方向是D 方向; ④丁所在方向是C 方向.其中判断正确的序号是__________.14、在平面几何中有如下结论,若正方形ABCD 的内切圆面积为1S 外接圆面积为2S 则1212S S =,推广到立体几何中可以得到类似结论:若正方体1111ABCD A B C D -的内切球体积为1V 外接球体积为2V ,则12=V V ______.15、设111()123f n n=++++L ,是否存在()g n 使等式:(1)(2)(1)()[()1]f f f n g n f n +++-=-L 对任意2,N n n ≥∈都成立,并证明你的结论.答案以及解析1答案及解析: 答案:D解析:根据题意,归纳推理,就是由部分到整体的推理。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个解析演绎推理只有大前提、小前提和推理形式都正确才能保证结论正确,故②错误,其他都正确.故选C.答案C2有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,a⊂平面α,直线b∥平面α,则直线b∥直线a”,这显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析“直线平行于平面,则该直线平行于平面内所有直线”是错误的,即大前提是错误的.故选A.答案A3(1)已知p3+q3=2,求证:p+q≤2.用反证法证明此命题时可假设p+q≥2;(2)已知a,b∈R,|a|+|b|<1,求证:关于x的方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明此命题时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确解析反证法证明问题的第一步是“假设命题的结论不成立,即假设结论的反面成立”,而命题(1)结论的反面应为“p+q>2”;对命题(2),其结论的反面为“方程x2+ax+b=0的两根的绝对值至少有一个大于或等于1”.故选D.答案D4如图,4个小动物换座位,开始时鼠、猴、兔、猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,第4次左右列动物互换座位,……这样交替进行下去,那么第2 017次互换座位后,小兔所坐的座位号为()A.1B.2C.3D.4解析由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,而2 017=4×504+1,所以第2 017次互换座位后结果与第1次互换座位结果相同,故小兔坐在1号座位上,故选A.答案A5若f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N*,则f2 017(x)等于()A.sin xB.-sin xC.cos xD.-cos x解析由题意可知,函数f n(x)的表达式是呈周期性变化的,周期为4,而2 017=4×504+1, 故f2 017(x)=f1(x)=cos x,故选C.答案C6观察式子:1+,1+,1+,……,则可归纳出一般式子为()A.1++…+(n≥2,n∈N)B.1++…+(n≥2,n∈N)C.1++…+(n≥2,n∈N)D.1++…+(n≥2,n∈N)答案C7已知a,b为两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析对于选项A,直线a,b有可能相交或异面;对于选项B,直线a,b有可能相交或异面;对于选项C,平面α,β有可能相交;对于选项D,若a⊥α,b⊥β,当a⊂β时,有b⊥a,当a⊄β时,因为α⊥β,所以a∥β,所以b⊥a,故选D.答案D8对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,则每组内奇数之和S n与其所在组的编号数n的关系是()A.S n=n2B.S n=n3C.S n=n4D.S n=n(n+1)解析当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;故归纳猜想S n=n3,故选B.答案B9古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:①②他们研究过图①中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图②中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数,又是正方形数的是()A.289B.1 024C.1 225D.1 378解析根据图形的规律可知,第n个三角形数为a n=,第n个正方形数为b n=n2,由此可排除选项D(1 378不是平方数),将选项A,B,C中的数代入到三角形数与正方形数表达式中检验可知,符合题意的是选项C,故选C.答案C10六个面都是平行四边形的四棱柱称为平行六面体.如图①所示,在平行四边形ABCD中,有AC2+BD2=2(AB2+AD2),在如图②所示的平行六面体ABCD-A1B1C1D1中,A+B+C+D等于()A.2(AB2+AD2+A)B.3(AB2+AD2+A)C.4(AB2+AD2+A)D.4(AB2+AD2)解析如图,连接A1C1,AC,则四边形AA1C1C是平行四边形,故A1C2+A=2(A+AC2).连接BD,B1D1,则四边形BB1D1D是平行四边形,∴B+D=2(B+BD2).又在▱ABCD中,AC2+BD2=2(AB2+AD2).∵A=B,∴A+B+C+D=2(A+AC2)+2(B+BD2)=2(AC2+BD2+B+A)=2[2(AB2+AD2)+2A]=4(A B2+AD2+A).故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11用三段论证明f(x)=x3+sin x(x∈R)为奇函数的步骤为.答案对定义域内的任意x,若满足f(-x)=-f(x),则函数f(x)为奇函数, 大前提因为x∈R,则-x∈R,f(-x)=(-x)3+sin(-x)=-x3-sin x=-f(x), 小前提所以函数f(x)=x3+sin x(x∈R)为奇函数.结论12观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是.解析因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案F+V-E=213为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密的原理如下:明文密文密文明文已知加密为y=a x-2(x为明文,y为密文),明文“3”通过加密后得到的密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方收到的密文为“14”,则原发送的明文为.解析由题意知,当x=3时,函数y=a x-2的函数值为6,即6=a3-2,∴a3=8,∴a=2.∴y=2x-2.则当y=14时,有14=2x-2,∴2x=16.∴x=4,故原发送的明文为4.答案414观察图象,第行的各数之和等于2 0172.解析观察知,题图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0172,得2n-1=2 017,∴n=1 009.答案1 00915蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数,则用n表示的f(n)=.解析由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当n≥2时,有f(n)-f(n-1)=6(n-1),∴f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1.答案3n2-3n+1三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)实数的乘法与向量的数量积有以下类似的性质:a·b=b·a,a·b=b·a,(a+b)·c=a·c+b·c,(a+b)·c=a·c+b·c.则由①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c,猜想对于向量的数量积有什么样的结论,猜想是否正确?解猜想:①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c.这两个结论都不正确.①式左边表示与c共线的向量,右边表示与a共线的向量,c与a不一定共线,故等式不一定成立.②设a与c的夹角为α,a与b的夹角为β,由a·c=a·b,得|a||c|cos α=|a||b|cos β,可得|c|cos α=|b|cos β,则c,b在a方向上的投影相等,b,c不一定相等.故等式不一定成立.17(8分)已知△ABC的三边a,b,c的倒数成等差数列,证明角B为锐角.分析在△ABC中,要证角B为锐角,只要证cos B>0,结合余弦定理可解决问题.证明要证明角B为锐角,只需证cos B>0.又因为cos B=,所以只需证明a2+c2-b2>0,即a2+c2>b2.因为a2+c2≥2ac,所以只需证明2ac>b2.由已知,得,即2ac=b(a+c).所以只需证明b(a+c)>b2,即只需证明a+c>b.而已知a,b,c为△ABC的三边,即a+c>b成立,所以角B为锐角.18(9分)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n,证明数列{c n}不是等比数列.分析假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.证明假设数列{c n}是等比数列,则当n≥2时,(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1).①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n,即2=.②当p,q异号时,<0,与②相矛盾;当p,q同号时,因为p≠q,所以>2,与②相矛盾.故数列{c n}不是等比数列.19(10分)已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A,B.(1)若|AB|=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.(1)解由题意知,b=1.由a2=b2+c2可得c=b=1,a=,所以椭圆的方程为+y2=1.由消去y得(2k2+1)x2-kx-=0.Δ=k2-4(2k2+1)×=16k2+>0恒成立.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-.所以|AB|=·|x1-x2|=,化简得23k4-13k2-10=0,即(k2-1)(23k2+10)=0,解得k=±1.(2)证明因为=(x1,y1-1),=(x2,y2-1),所以=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-k(x1+x2)+=-=0.所以不论k取何值,以AB为直径的圆恒过点M.20(10分)已知数列{a n}的各项均为正数,b n=n a n(n∈N*),e为自然对数的底数.(1)求函数f(x)=1+x-e x的单调区间,并比较与e的大小;(2)计算,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<e S n.解(1)f(x)的定义域为(-∞,+∞),f'(x)=1-e x.当f'(x)>0,即x<0时,f(x)单调递增;当f'(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令x=,得1+,即<e.①(2)=1·=1+1=2;=2·2=(2+1)2=32;=32·3=(3+1)3=43.由此推测:=(n+1)n.②下面用数学归纳法证明②.(ⅰ)当n=1时,左边=右边=2,②成立.(ⅱ)假设当n=k时,②成立,即=(k+1)k.当n=k+1时,b k+1=(k+1)a k+1,由归纳假设可得=(k+1)k(k+1)=(k+2)k+1.所以当n=k+1时,②也成立.根据(ⅰ)(ⅱ),可知②对一切正整数n都成立.(3)由c n的定义、②、算术-几何平均值不等式、b n的定义及①得T n=c1+c2+c3+…+c n=(a1+(a1a2+(a1a2a3+…+(a1a2…a n=+…+≤+…+=b1+b2+…++…+b n·=b1+b2+…+b n+…+a1+a2+…+a n<e a1+e a2+…+e a n=e S n,即T n<e S n.。
第二章推理与证明(B)一、选择题1、下列有关三段论推理“自然数都是整数,4是自然数,所以4是整数”的说法正确的是( )A.推理正确B.推理形式不正确C.大前提错误D.小前提错误2、下列推理过程是类比推理的是( )A.人们通过大量试验得出掷硬币出现正面的概率为1 2B.科学家通过研究老鹰的眼睛发明了电子鹰眼C.通过检测溶液的pH值得出溶液的酸碱性D.由周期函数的定义判断某函数是否为周期函数3、已知f(x)=x3+x,a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值( )A.一定大于零B.一定等于零C.一定小于零D.正负都有可能实用文档4、勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有( )A.p+q+r=dB.p2+q2+r2=d2C.p3+q3+r3=d3D.p2+q2+r2+pq+pr+qr=d25、观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出一般式子为( )A.1+122+132+…+1n2<12n-1(n≥2)B.1+122+132+…+1n2<2n+1n(n≥2)C.1+122+132+…+1n2<2n-1n(n≥2)D.1+122+132+…+1n2<2n2n+1(n≥2)6、若a,b,c均为实数,则下面四个结论均是正确的:实用文档①ab=ba;②(ab)c=a(bc);③若ab=bc,b≠0,则a-c=0;④若ab=0,则a=0或b=0.对向量a,b,c,用类比的思想可得到以下四个结论:①a·b=b·a;②(a·b)c=a(b·c);③若a·b=b·c,b≠0,则a=c;④若a·b=0,则a=0或b=0.其中结论正确的有( )A.0个B.1个C.2个D.3个7、已知数列{a n}满足a1=0,a n+1=a n-33a n+1(n∈N*),则a2 010等于( )A.0 B.- 3 C. 3 D.3 28、由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )A.各正三角形内任一点实用文档实用文档 B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点9、已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么()A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c10、下列三句话按三段论的模式排列顺序正确的是( )①2 006能被2整除;②一切偶数都能被2整除;③2 006是偶数.A .①②③B .②①③C .②③①D .③②①11、有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是( )A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确二、填空题12、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,55,…这些数叫做三角形数,这是因为这些数目的点可以排成正三角形(如图所示),则三角形数的一般表达式f(n)=__________.13、对于“求证函数f(x)=-x3在R上是减函数”,用“三段论”可表示为:大前提是“对于定义域为D的函数f(x),若对任意x1,x2∈D且x2-x1>0,有f(x2)-f(x1)<0,则函数f(x)在D上是减函数”,小前提是“__________________________”,结论是“f(x)=-x3在R上是减函数”.实用文档实用文档14、在△ABC 中,D 为边BC 的中点,则=12(+).将上述命题类比到四面体中去,得到一个类比命题:________________________________.15、下面的四个不等式:①a 2+b 2+c 2≥ab +bc +ca ;②a (1-a )≤14;③a b +b a≥2; ④(a 2+b 2)·(c 2+d 2)≥(ac +bd )2.其中不成立的有________个.三、解答题16、设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.17、观察下表:1,2,34,5,6,78,9,10,11,12,13,14,15,…问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 008是第几行的第几个数?18、设二次函数f(x)=ax2+bx+c (a≠0)中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:实用文档方程f(x)=0无整数根.19、如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F 是BE的中点.(1)求证:DF∥平面ABC;(2)求证:AF⊥BD.20、已知a>0,b>0,a+b=1,求证:a+12+b+12≤2.实用文档实用文档21、已知函数f (x )=lg ⎝ ⎛⎭⎪⎫1x -1,x ∈⎝ ⎛⎭⎪⎫0,12.若x 1,x 2∈⎝ ⎛⎭⎪⎫0,12且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.以下是答案一、选择题1、A [三段论中的大前提,小前提以及推理形式都是正确的,所以结论正确.]2、B实用文档3、A [f (x )=x 3+x 是奇函数,且在R 上是增函数,由a +b >0得a >-b ,所以f (a )>f (-b ),即f (a )+f (b )>0,同理f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.]4、B5、C [由合情推理可归纳出1+122+132+…+1n 2<2n -1n (n ≥2).]6、B [利用类比思想结合向量的定义及性质,特别是向量的数量积的定义可知①正确,②③④不正确.]7、C [a 2=0-30+1=-3,a 3=-3-3-3·3+1=3,a 4=0,所以此数列具有周期性,0,-3,3依次重复出现.因为2 010=3×670,所以a 2 010= 3.]8、C [正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.故选C.]实用文档9、A [分别令n =1,2,3,得⎩⎪⎨⎪⎧ 3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.]10、C11、D [用反证法证题时一定要将对立面找全.在(1)中应假设p +q >2.故(1)的假设是错误的,而(2)的假设是正确的,故选D.]二、填空题12、n (n +1)2解析 当n =1时,1=1×22;当n =2时,3=2×32;当n =3时,6=3×42;当n =4时,10=4×52;…,猜想:f (n )=n (n +1)2.13、对于任意x 1,x 2∈R 且x 2-x 1>0,有f (x 2)-f (x 1)=-x 32+x 31=-(x 2-x 1)(x 22+x 1x 2+x 21)=-实用文档(x 2-x 1)·⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x 2+x 122+34x 21<014、在四面体A —BCD 中,G 为△BCD 的重心,则=13(++)15、1解析 由a 2+b 2+c 2-(ab +bc +ca )=12[2a 2+2b 2+2c 2-2ab -2bc -2ca ] =12[(a -b )2+(b -c )2+(c -a )2]≥0, 故①正确.由14-a (1-a )=14-a +a 2=⎝ ⎛⎭⎪⎫a -122≥0, 故②正确.(a 2+b 2)·(c 2+d 2)-(ac +bd )2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-2acbd -b 2d 2=a 2d 2+b 2c 2-2abcd =(ad -bc )2≥0,故④正确.实用文档∵a b +b a ≥2或a b +b a≤-2,∴③不正确.三、解答题16、证明 假设|f (1)|<12,|f (2)|<12,|f (3)|<12, 于是有-12<1+a +b <12 ①-12<4+2a +b <12 ②-12<9+3a +b <12 ③①+③,得-1<10+4a +2b <1,所以-3<8+4a +2b <-1,所以-32<4+2a +b <-12. 由②知-12<4+2a +b <12,矛盾, 所以假设不成立,即|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.17、解 (1)由表知,第二行起,每行的第一个数为偶数,所以第n +1行的第一个数为2n ,所实用文档以第n 行的最后一个数为2n -1.(2)由(1)知第n -1行的最后一个数为2n -1-1,第n 行的第一个数为2n -1,第n 行的最后一个数为2n -1.又由观察知,每行数字的个数与这一行的第一个数相同,所以由等差数列求和公式得,S n =2n -1(2n -1+2n -1)2=22n -3+22n -2-2n -2. (3)因为210=1 024,211=2 048,又第11行最后一个数为211-1=2 047,所以2 008是在第11行中,由等差数列的通项公式得,2 008=1 024+(n -1)·1,所以n =985,所以2 008是第11行的第985个数.18、证明 假设方程f (x )=0有一个整数根k ,则ak 2+bk +c =0.①因为f (0)=c ,f (1)=a +b +c 均为奇数,所以a +b 必为偶数,当k 为偶数时,令k =2n (n ∈Z ),则ak 2+bk +c =4n 2a +2nb +c =2n (2na +b )+c 必为奇数,与①式矛盾;当k 为奇数时,令k =2n +1 (n ∈Z ),实用文档则ak 2+bk +c =(2n +1)(2na +a +b )+c 为一奇数与一偶数乘积加上一个奇数,必为奇数,也与①式矛盾,故假设不成立.综上可知方程f (x )=0无整数根.19、证明 (1)取AB 的中点G ,连接FG ,CG ,可得FG ∥AE ,FG=12AE , 又CD ⊥平面ABC ,AE ⊥平面ABC ,∴CD ∥AE ,CD =12AE , ∴FG ∥CD ,FG =CD .又∵FG ⊥平面ABC ,∴四边形CDFG 是矩形,DF ∥CG ,CG ⊂平面ABC ,DF ⊄平面ABC ,∴DF ∥平面ABC .实用文档 (2)Rt △ABE 中,AE =2a ,AB =2a ,F 为BE 的中点, ∴AF ⊥BE ,∵△ABC 是正三角形,∴CG ⊥AB ,∴DF ⊥AB ,又DF ⊥FG ,FG ∩AB =G ,∴DF ⊥平面ABE ,DF ⊥AF , 又∵DF ∩BE =F ,∴AF ⊥平面BDF ,又BD ⊂平面BDF ,∴AF ⊥BD .20、证明 ∵1=a +b ≥2ab ,∴ab ≤14. ∴12(a +b )+ab +14≤1. ∴⎝ ⎛⎭⎪⎫a +12⎝⎛⎭⎪⎫b +12≤1. 从而有2+2⎝ ⎛⎭⎪⎫a +12⎝⎛⎭⎪⎫b +12≤4. 即⎝ ⎛⎭⎪⎫a +12+⎝⎛⎭⎪⎫b +12+2⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤4. ∴⎝⎛⎭⎪⎪⎫a +12+b +122≤4.实用文档 ∴a +12+b +12≤2.21、证明 要证原不等式成立,只需证明 ⎝ ⎛⎭⎪⎫1x 1-1⎝ ⎛⎭⎪⎫1x 2-1>⎝ ⎛⎭⎪⎫2x 1+x 2-12, 事实上,∵0<x 1,x 2<12,x 1≠x 2, ∴⎝ ⎛⎭⎪⎫1x 1-1⎝ ⎛⎭⎪⎫1x 2-1-⎝ ⎛⎭⎪⎫2x 1+x 2-12 =1x 1x 2-1x 1-1x 2-4(x 1+x 2)2+4x 1+x 2 =(x 1-x 2)2(1-x 1-x 2)x 1x 2(x 1+x 2)2>0. ∴⎝ ⎛⎭⎪⎫1x 1-1⎝ ⎛⎭⎪⎫1x 2-1>⎝ ⎛⎭⎪⎫2x 1+x 2-12, 即有lg ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 1-1⎝ ⎛⎭⎪⎫1x 2-1>lg ⎝ ⎛⎭⎪⎫2x 1+x 2-12, 故12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.。