场发射环境扫描电镜配置及技术规格表
- 格式:doc
- 大小:91.50 KB
- 文档页数:4
MV_RR_CNJ_0010分析型扫描电子显微镜方法通则1.分析型扫描电子显微镜方法通则的说明编号JY/T 010—1996名称(中文)分析型扫描电子显微镜方法通则(英文)General rules for analytical scanning electron microscopy归口单位国家教育委员会起草单位国家教育委员会主要起草人林承毅 万德锐批准日期 1997年1月22日实施日期 1997年4月1日替代规程号无适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。
定义主要技术要求 1.2. 方法原理3. 仪器4. 样品5. 分析步骤6. 分析结果表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2.分析型扫描电子显微镜方法通则的摘要本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。
2 定义2.1二次电子 secondary electron在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。
2.2背散射电子 backscattered electron被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。
它又称为反射电子(Reflected Electron),以RE表示。
其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。
2.3 放大倍数 magnification扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。
如果样品上长度为L s直线上的信息,在显像管上成像在L c 长度上,则放大倍数为M =-L L -c s扫描电镜的有效放大倍数与电子束直径有关。
如果样品上电子束编址的单位区域,即像素,小于电子束直径,每次取样传送的信息包含一个以上的像素,前后传送的信息互相部分重叠。
钨灯丝扫描电子显微镜EVO MA 10/LS 10详细描述:品牌:卡尔·蔡司 型号:EVO MA 10/LS 10制造商:德国卡尔蔡司公司 经销商:欧波同纳米技术有限公司免费咨询电话:800-8900-558【品牌故事】世界顶级光学品牌,可见光及电子光学的领导企业----德国蔡司公司始创于1846年。
其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥),积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一:第一台静电式透射电镜 (1949)第一台商业化扫描电镜 (1965)第一台数字化扫描电镜(1985)第一台场发射扫描电镜(1990)第一台带有成像滤波器的透射电镜 (1992)第一台具有Koehler照明的 200kV 场发射透射电镜(2003)第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003)CARL ZEISS以其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。
自成立至今,一直延续不断创新的传统,公司拥有电镜制造最核心最先进的专有技术,随着离子束技术和基于电子束的分析技术的加入、是全球唯一为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案的电镜制造企业。
其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。
作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。
【总体描述】EVO系列电镜是高性能、功能强大的高分辨应用型扫描电子显微镜。
MA 10用于材料领域,LS 10用于生命科学领域。
该系列电镜采用多接口的大样品室和艺术级的物镜设计,提供高低真空成像功能,可对各种材料表面作分析,并且具有业界领先的X射线分析技术。
革命性的Beamsleeve的设计,确保在低电压条件下提供高分辨率的锐利图像,同时还可以进行准确的能谱分析。
场发射扫描电镜工作原理场发射扫描电镜(Field Emission Scanning Electron Microscope,FE-SEM)是一种利用电子束扫描样品表面并通过信号与图像处理系统来重现样品表面微观结构的高分辨率电子显微技术。
FE-SEM是目前最常用、最成熟的电子显微技术之一,具有分辨率高、对样品厚度敏感度低、对材料表面信息获取能力强等优点。
FE-SEM的工作原理非常复杂,下面简要介绍其基本原理。
FE-SEM主要由以下几个部分组成:电子枪、聚焦系统、扫描系统、检测系统和成像系统。
其中电子枪和聚焦系统是电子束发射和聚焦的部分,扫描和检测系统则负责扫描样品表面并收集反射的电子信号,最后成像系统则将信号转化为图像。
电子枪通过引入高压电场和热发射,产生一个极小尺寸的电子束。
聚焦系统的作用是将电子束聚焦到样品表面上,使其成为一束高能量、小尺寸的电子束。
这个过程中,电子束会出现能量弥散,需要进行补偿,以形成更加稳定的电子束。
扫描系统的作用是将电子束在样品表面进行扫描,构建出样品表面的形貌和结构信息。
这个过程中,扫描器会通过在x和y方向上推动电子束来进行扫描,电子束与样品表面会产生相互作用,产生不同的信号。
这些信号经过检测系统的收集,可以分为两种类型:二次电子信号和背散射电子信号。
二次电子信号主要反映的是样品表面的形貌和镜像信息,而背散射电子信号则主要反映样品表面的成分和晶体结构信息。
检测系统可以通过检测这些信号并转化为图像,将样品表面的形貌和结构再现出来。
不同的检测系统可以处理的信号类型不同,有些可以处理二次电子信号,有些则只能处理背散射电子信号。
一般情况下,将这两种信号进行叠加可以获得更加完整的样品信息。
总的来说,FE-SEM的工作原理基于电子枪和聚焦系统形成高能量、小尺寸的电子束,扫描系统进行扫描和信号收集,检测系统将信号转化为图像再进行成像的整个过程。
在这个过程中,电子束与样品表面的相互作用是最核心的。
场发射扫描电镜原理场发射扫描电镜(Field Emission Scanning Electron Microscopy,FE-SEM)是一种高分辨率、高清晰度的电镜技术。
其原理是在极细的钨(W)尖端处实现高强度的电场,这个电场可以帮助电子从钨尖端跃迁到样品上,形成高能的电子束,用来扫描和成像样品表面。
FE-SEM主要包括场致发射和电子透镜系统两个关键部分。
其中,场致发射是产生高强度电场的过程,通常采用极细的钨尖作为阴极,在其表面施加高电压,使钨尖表面的电子能够克服表面张力势垒跃出,并且形成高强度的电场。
在这种条件下,钨尖表面的电子被聚集在针尖旁边近似球形区域内,形成一种被称为“自发致密区”(Self-Assembled Dense Region,SADR)的结构。
这个结构在钨尖表面周围,造成高强度电场,在这个电场中,靠近钨尖表面的电子通过场致发射跃迁到样品表面,形成高能的电子束。
电子透镜系统由磁场和电场组成,用来引导和聚焦电子束。
其中,强壮的磁场和透镜系统是FE-SEM的一个关键组件,用于弯曲桥架射束中的电子,确定电子束扫描的方向和位置。
另一方面,电子透镜由多组电极组成,根据网格的配置和设计,可以对电子束进行聚焦。
这个过程可以在聚焦点上产生高度聚焦的电子束,使得电子束与样品表面的距离减小,进而在样品表面上产生高分辨率图像。
在FE-SEM中,电子束的扫描和成像过程是快速的。
电子束的聚焦和聚焦所花费的时间和贡献非常小。
因此,它可以在高速、高解析度和高图像质量的条件下对不同样品进行成像和分析。
其图像质量和解析度可以达到亚纳米级别,可以对大量的材料、结构和器件进行微观结构表征和研究。
尤其对于材料科学、纳米科学、生物医学和材料工程领域,FE-SEM已经成为一种不可或缺的研究手段。