八年级数学上第一次月考卷
- 格式:doc
- 大小:126.00 KB
- 文档页数:3
八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
2024-2025学年八年级数学上学期第一次月考卷(贵州专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某校九年级学生计划前往贵州省博物馆开展一天的研学活动,出发前每班需要准备一个三角形形状的队旗,下列给出的三边长规格中,可以实现三角形队旗制作的是( )A.6dm,6dm,12dm B.8dm,4dm,2dmC.6dm,3dm,10dm D.6dm,8dm,7dm【答案】D【详解】解:A、6+6=12,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;B、2+4=6<8,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;C、6+3<10,不符合三角形的三边规则,两边之和大于第三边,不能组成三角形,所以本选项不符合题意;D、6+7>8,符合三角形的三边规则,两边之和大于第三边,能组成三角形,所以本选项符合题意.故选:D.2.如图,∠C=∠D,添加下列条件,能使△ABC≌△BAD的是( )A.AC=BD B.∠1=∠2C.AD=BC D.以上都可以【答案】D【详解】解:∵∠C=∠D,AB=BA,∠CEA=∠DEB,添加AC=BD时,则可利用AAS证明△ECA≌△EDA,∴AE=BE,∠CAE=∠DBE,∴∠1=∠2,∠1+∠CAE=∠2+∠DBE,即∠CAB=∠DBA,∴△ABC≌△BAD(AAS),故A正确,符合题意;添加∠1=∠2时,可得AE=BE,∴△ECA≌△EDA(AAS),∴AC=BD,∴△ABC≌△BAD(AAS),故B添加AD=BC时,如图,延长AC,BD交于点F,∵∠ACB=∠ADB,∴∠FCB=∠FDA,∵∠A=∠A,AD=BC,∴△FAD≌△FBC(AAS),∴FA=FB,∴∠CAB=∠DBA,∵AB=BA,∴△CAB≌△DBA(AAS),故C正确,符合题意;故选:D.3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( )A .BF =CFB .∠C +∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF【答案】C【详解】解:∵AF 是△ABC 的中线,∴BF =CF ,A 说法正确,不符合题意;∵AD 是高,∴∠ADC =90°,∴∠C +∠CAD =90°,B 说法正确,不符合题意;∵AE 是角平分线,∴∠BAE =∠CAE ,而∠BAF 与∠CAF 不一定相等,C 说法错误,符合题意;∵BF =CF ,∴S △ABC =2S △ABF ,D 说法正确,不符合题意;故选:C .4.一副含30°角和45°角的直角三角板如图摆放,则∠1的度数为( )A .60°B .65°C .75°D .70°【答案】C【详解】解:在图中标记∠2,∠3,∠4,如图所示.∵∠2=45°,∠3=∠2,∴∠3=45°,又∵∠1=∠3+∠4,∠4=30°,∴∠1=45°+30°=75°.故选:C.5.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为( )A.20°B.35°C.40°D.45°【答案】B【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.6.如图,将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则下列说法正确的是( )A.外角和减少180°B.外角和增加180°C.内角和减少180°D.内角和增加180°【答案】D【详解】解:将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则五边形ABCDE的内角和为:(5﹣2)×180°=540°,六边形ABCDGF的内角和为:(6﹣2)×180°=720°,∴720°﹣540°=180°,∵五边形ABCDE六边形ABCDGF的外角和都是360°,∴将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,内角和增加180°,外角和不变.故选:D.7.a、b、c是三角形的三边,其中a、b两边满足|a﹣3|+(b﹣2)2=0,那么这个三角形的第三边可以是( )A.1B.3C.5D.7【答案】B【详解】解:∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,解得:a=3,b=2,∵a、b、c是三角形的三边,∴3﹣2<c<3+2,即1<c<5,∴这个三角形的第三边可以是3.故选:B.8.如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC=α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为( )A.30°B.45°C.60°D.75°【答案】B【详解】解:如图,BE=AG,∠BEC=∠AGB=90°,EC=GB,∴△BEC≌△AGB(SAS),∴∠ECB=∠GBA,∵∠ECB+∠EBC=90°,∴∠GBA+∠EBC=90°,∴∠ABC=90°=α,∵∠β+∠CBD=90°,∠CBD+∠ABD=90°,∴∠ABD=β,∵∠ADF=∠ABD+∠BAD=45°,∴β+γ=45°,∴α﹣β﹣γ=90°﹣45°=45,故选:B.9.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是60cm,当小明从水平位置CD上升15cm时,这时小红离地面的高度是( )A.35cm B.40cm C.45cm D.50cm【答案】C【详解】解:在△OCF与△ODG中,,∴△OCF≌△ODG(AAS),∴CF=DG=15(cm),∴小明离地面的高度是60﹣15=45(cm),故选:C.10.画∠AOB的平分线的方法有多种,嘉嘉和淇淇的方法如图所示,下列判断正确的是( )①利用直尺和三角板画CD∥OB;①利用圆规截取OM=ON,OC=OD;A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【详解】解:对于嘉嘉的方法:∵CD∥OB,∴∠CPO=∠BOP,∵CO=PC,∴∠AOP=∠CPO,∴∠AOP=∠BOP,∴OP平分∠AOB,∴嘉嘉的方法正确;对于淇淇的方法:∵OM=ON,OC=OD,∠CON=∠DOM,∴△CON≌△DOM(SAS),∴∠OCP=∠ODP,∵OM=ON,OC=OD,∴OC﹣OM=OD﹣ON,∴CM=DN,∵∠CPM=∠DPN,∴△CPM≌△DPN(AAS),∴CP=DP,∵OP=OP,∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,∴OP平分∠AOB,∴淇淇的方法正确;综上所述:两人都对,故选:C.11.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③【答案】A【详解】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴BE=EF,在Rt△AEF和Rt△AEB中,,∴Rt△AEF≌Rt△AEB(HL),∴AB=AF,∠AEF=∠AEB,∵点E是BC的中点,∴EC=EF=BE,故③错误;在Rt△EFD和Rt△ECD中,,∴Rt△EFD≌Rt△ECD(HL),∴DC=DF,∠FDE=∠CDE,故②正确;∴AD=AF+FD=AB+DC,故④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,故①正确.因此正确的有①②④,故选:A.12.如图,已知△ABC的内角∠A=α,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;……以此类推得到∠A2018,则∠A2018的度数是( )A.B.C.D.90°+【答案】B【详解】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=α,∴∠A1=;同理可得∠A2=∠A1=•α=,∴∠A n=,∴∠A2018=.故选:B.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
2024-2025学年八年级数学上学期第一次月考卷(湖南省专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:湘教版八年级上册:分式、三角形。
5.难度系数:0.65。
一、选择题(本题共10小题,每小题3分,共30分)1.在2x ,3x y +,ππ3-,5a x -,2x y x-中,分式的个数为( )A .1B .2C .3D .42A .23a a +=B .426x x x ¸=C .111x x -æö=-ç÷èøD .()3261x x -=3.下面四个图形中,线段BD 是ABC V 的高的是( )A .B .C .D .【答案】D【解析】由图可得,线段BD 是ABC V 的高的图是D 选项.故选D4.圆珠笔笔芯内钢珠直径为0007035cm .m ,数用科学记数法表示为( )A .4703510.-´B .5703510.-´C .5703510.-´D .3703510.-´【答案】D【解析】30007035703510..-=´,故选D .5.一个三角形三个内角度数的比是5 :3 :2,这个三角形是( )三角形.A .锐角B .直角C .钝角D .不能确定6.分式2497-+x x 的值为零,则x 的值为( )A .7±B .7C .D .073cm ,则腰长为( )A .2cmB .8cmC .2cm 或8cmD .以上结论全不对【答案】B【解析】如图所示,设腰长为2x ,一腰的中线为y ,则(2)(5)3x x x +-+=或(5)(2)3x x x +-+=,解得4x =,1x =,28x \=或2,①三角形ABC 三边长为8、8、5,符合三角形三边关系定理;②三角形ABC 三边是2、2、5,225+<,不符合三角形三边关系定理;故选B .8.某商店需要购进甲乙两种商品,已知甲的进价比乙多50元,分别用2万元进货甲乙两种商品,购买乙的件数比甲多20件,现设乙的进价为x 元,则下列方程正确的是( )A .20000200002050x x -=+B .20000200002950x x -=-C .20000200002050x x -=+D .20000200002050x x -=-9ABC 形ABDF 的面积为20,则ABC V 的面积为( )A .30B .32C .34D .3610.已知实数m n p 、、满足1110m n p m n P-+=+-=,则下列结论:①若0m >,则n p >;②若1p =,则21m m -=;③若222m p -=,则2mp =;④若1np =,则1m =.其中正确的为( )A .②③④B .①②③④C .①②③D .①③④11.分式256a b 和218abc 的最简公分母是__________.12【答案】20°/20度【解析】如图,令∠BAF =∠1,∠CAN =∠2.∵EF ,MN 分别为AB ,AC 的垂直平分线,∴FA =FB ,则∠B =∠1,NA =NC ,则∠C =∠2,∵12180B C FAN Ð+Ð+Ð+Ð+Ð=°,即()212180FAN Ð+Ð+Ð=°,而12100BAC FAN Ð=Ð+Ð+Ð=°,即12110FAN Ð+Ð=°-Ð,∴()2100180FAN FAN °-Ð+Ð=°,解得20FAN Ð=°,故答案是:20°.13.若分式3x x -有意义,则x 的取值范围是__________.14M 、N 两点.若5AB =,7AC =,则AMN V 的周长是__________.【答案】12【解析】BO Q 平分ABC Ð,CO 平分ACB Ð,ABO OBC \Ð=Ð,ACO OCB Ð=Ð,MN BC Q P ,MOB OBC \Ð=Ð,NOC OCB Ð=Ð,ABO MOB \Ð=Ð,ACO NOC Ð=Ð,MB MO \=,NO NC =,5AB =Q ,7AC =,AMN \V 的周长AM MN AN =++AM MO ON AN=+++AM MB NC AN =+++AB AC =+57=+12=,故答案为:12.15.已知912m =,36n =,求23m n -的值为__________.【答案】2【解析】∵912m =,36n =,∴()2312m =,∴2312m =,∴223331262m n m n -=¸=¸=,故答案为:2.16.如图,P 是ABC V 内一点,连接BP ,CP ,已知12Ð=Ð,34ÐÐ=,100A Ð=°,则BPC Ð的度数为__________°.【答案】140【解析】在ABC V 中, 180A ABC ACB Ð+Ð+Ð=°,∵100A Ð=°,∴18010080ABC ACB Ð+Ð=°-°=°,即123480Ð+Ð+Ð+Ð=°,∵12,34Ð=ÐÐ=Ð,∴222480Ð+Ð=°,∴2440Ð+Ð=°,在BPC V 中, 24180BPC Ð+Ð+Ð=°,∴140BPC Ð=°,故答案为:140.17.若关于x 的分式方程3322x m x x +=--有增根,则m 的值为__________.182AE =,当EF CF +取最小值时,ECF Ð=__________°.【答案】30【解析】∵ABC V 是等边三角形,4AB =,AD BC ^,∴直线AD 为ABC V 的一条对称轴,4AB BC CA ===,60B ACB Ð=Ð=°,AD 平分BAC Ð,∴点B ,点C 关于直线AD 对称,连接BE ,交AD 于点1F ,则点1F 为EF CF +取最小值时的位置点,,∴BE 平分ABC Ð,ABC 角平分线的交点,连接30C A B °Ð=,故答案为:分,其中第19、20题各6分,第25、26题各10分)19.解方程:(1)11222x x x-=---;(2)2321212141x x x x +-=+--.20.先化简,再求值:2282442x x x x x æö¸--ç÷-+-èø,并从0,1-,2中选一个合适的数作为x 的值代入求值.21(1)尺规作图:在射线DM 上方求作DEF Ð,使得DEF C Ð=Ð,与BA 的延长线交于点F .(保留作图痕迹)(2)在(1)问条件下,若BD AF =,求证:AC FE ∥.请把以下的解题过程补充完整.证明:DM BC ∥Q (已知),B FDE \Ð=Ð(① ),BD AF =Q 已知),BD AD \-=② (等式的性质),即AB FD =,在ABC V 和FDE V 中,B FDEC DEF AB FD Ð=ÐìïÐ=Ðíï=î,(AAS)ABC FDE \△≌△,∴③ (全等三角形的对应角相等),AC FE \∥(④ ).【解析】(1)解:如图,DEF Ð即为所求作的角;.(2)证明:DM BC ∥Q (已知),B FDE \Ð=Ð(两直线平行,同位角相等),BD AF =Q (已知),BD AD AF AD \-=-(等式的性质),AB FD \=,在ABC V 和FDE V 中,B FDE C DEF AB FD Ð=ÐìïÐ=Ðíï=î,(AAS)ABC FDE \△≌△,BAC DFE \Ð=Ð(全等三角形的对应角相等),AC FE \∥(同位角相等,两直线平行).故答案为:①两直线平行,同位角相等;②AF AD -;③BAC DFE Ð=Ð;④同位角相等,两直线平行.22.自中欧班列开通以来,重庆与欧洲各国经贸往来日益频繁,某欧洲客商准备在重庆采购一批特色商品,经调查,用1600元采购A 型商品的件数是用1000元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价少20元.(1)求A 、B 型商品的进价;(2)该客商计划投入18000元用于购进这两种商品,已知购进A 、B 两种商品共200件,A 型商品的售价为160元/件,B 240元/件,若该客商全部销售完这些商品,则可获得的利润是多少元?23.如图,在四边形ABCD 中,AD BC ∥,B D Ð=Ð,点E 在BA 的延长线上,连接CE .(1)求证:E ECD Ð=Ð;(2)若60E Ð=°,CE 平分BCD Ð,请判断BCE V 的形状并说明理由.【解析】(1)证明:AD BC Q P ,EAD B \Ð=Ð,B D Ð=ÐQ ,EAD D \Ð=Ð,∴BE CD P ,∴E ECD Ð=Ð.(2)BCE V 是等边三角形.∵CE 平分BCD Ð,BCE ECD\Ð=Ð∵BE CD P ,60ECD E ÐÐ\==°,18060B E BCE ÐÐÐ\=°--=°,B BCE E ÐÐÐ\==,∴BCE V 是等边三角形.24.如图,在ABC V 中,过点A ,B 分别作直线AM ,BN ,且AM BN P ,过点C 作直线DE 交直线AM于点D ,交直线BN 于点E .(1)如图①,若AC ,BC 分别平分DAB Ð,EBA Ð,求ACB Ð的度数;(2)在(1)的条件下,若2AD =,5BE =,求AB 的长;(3)如图②,若AC AB =,且60DEB BAC Ð=Ð=°,点H 是EB 上一点,EH EC =,连接CH ,若AD a =,BE b =,则BH 的长为______.(用含a ,b 的式子表示)在上取一点连接,在AFC V 和ADC V 中,AF AD FAC DAC AC AC =ìïÐ=Ðíï=î,()SAS AFC ADC V V ≌,ADC AFC \Ð=Ð,AM BN Q P ,180ADC BEC \Ð+Ð=°,180AFC BFC Ð+Ð=°Q ,BFC BEC \Ð=Ð,在BFC V 和BEC V 中,BFC BEC FBC EBC BC BC Ð=ÐìïÐ=Ðíï=î,()AAS BFC BEC \V V ≌,5EB BF \==,257AB AF BF \=+=+=;(3)如图2,∵AC AB =,60BAC Ð=°,∴ABC V 为等边三角形,∴,60AC BC ACB =Ð=°,∵,60EC EH DEB =Ð=°,∴ECH V 为等边三角形,∴60ECH EHC Ð=Ð=°,∴120BHC Ð=°,∵AM BN P ,∴180ADC DEB Ð+Ð=°,∴120ADC Ð=°,∴,60ADC CHB DAC DCA Ð=ÐÐ+Ð=°,∵180DCA ACB HCB ECH Ð+Ð+Ð+Ð=°,∴60DAC HCB Ð+Ð=°,∴DAC HCB Ð=Ð,∴()AAS DAC HCB V V ≌,∴AD CH HE ==,∴BH BE HE BE AD b a =-=-=-.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ´=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.26满足2220a ab b -+=.(1)判断AOB V 的形状;(2)如图② ,在直线AB 上取一点Q ,连接OQ ,过A B ,两点分别作AM OQ ^于M ,BN OQ ^于N ,若94AM BN ==,,求MN 的长;(3)如图③ ,E 为AB 上一动点,以AE 为斜边作等腰直角ADE V ,P 为BE 的中点,连接PD PO ,,试问:线段PD PO ,是否存在某种确定的数量关系和位置关系?写出你的结论并证明.【解析】(1)解:等腰直角三角形.2220a ab b -+=Q ,2()0a b \-=,a b \=,90AOB Ð=°Q ,AOB \V 为等腰直角三角形;(2)解:90MOA MAO Ð+Ð=°Q ,90MOA MOB Ð+Ð=°,MAO MOB \Ð=Ð,AM OQ ^Q ,BN OQ ^,90AMO BNO \Ð=Ð=°,在MAO △和BON △中,MAO MOB AMO BNO OA OB Ð=ÐìïÐ=Ðíï=î,()AAS MAO NOB \V V ≌,OM BN \=,AM ON =,OM BN =,5MN ON OM AM BN \=-=-=;(3)解:PO PD =且PO PD ^,证明如下:延长DP 到点C ,使DP PC =,连接CP 、OD 、OC 、BC ,如图所示:在DEP V 和CBP V 中,DP PC DPE CPBPE PB =ìïÐ=Ðíï=î,()SAS DEP CBP \V V ≌,CB DE DA \==,135DEP CBP Ð=Ð=°,则1354590CBO CBP ABO Ð=Ð-Ð=°-°=°,又45BAO Ð=°Q ,45DAE =°∠,90DAO \Ð=°,在OAD △和OBC △中,DA CB DAO CBO OA OB =ìïÐ=Ðíï=î,()SAS OAD OBC \V V ≌,OD OC \=,AOD COB Ð=Ð,DOC \△为等腰直角三角形,PO PD \=,且PO PD ^.。
2022-2023学年重庆市南岸区文德中学八年级(上)第一次月考数学试卷1. 下列各数中,最小的是( )A. −√4B. 0.010010001C. πD. −232. 9的平方根是( )A. −3B. 3C. ±3D. ±93. 下列计算正确的是( )A. (x 3)2=x 9B. b 3+b 3=2b 3C. a 6÷a 3=a 2D. a 2⋅a 6=a 124. 下列语句中,正确的是( )A. 无限小数都是无理数B. 实数与数轴上的点是一一对应的C. 无理数分为正无理数、0和负无理数D. 无理数的平方一定是无理数5. 下列计算正确的是( )A. (x +y)2=x 2+y 2B. (x −y)2=x 2−2xy −y 2C. (−x +y)2=x 2−2xy +y 2D. (x +2y)(x −2y)=x 2−2y 26. 估计√17+1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7. 若4x 2−(k −2)x +25是一个完全平方式,则k 的值为( )A. 18B. 8C. −18或22D. −8或128. 盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配2个玩偶A 和3个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A. {x +y =136x =3yB. {x +y =136x =2×3yC. {x +y =1363x =6yD. {x +y =1362x =3y9. 已知x +y =1,x 2+y 2=2,那么x 4+y 4的值是( )A. 4B. 3C. 72D. 5210. 观察:(x −1)(x +1)=x 2−1,(x −1)(x 2+x +1)=x 3−1,(x −1)(x 3+x 2+x +1)=x 4−1,据此规律,当(x −1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2021−1的值为( )A. 1B. 0C. 1或−1D. 0或−211.若整数a使得关于x的不等式组{x+152≥x+34x+1≥a有且仅有6个整数解,且使关于y的一元一次方程2y+a3−y+a2=1的解满足y>21.则所有满足条件的整数a的值之和为( )A. 31B. 48C. 17D. 3312.已知整式A=3−2x,B=2x+1,则下列说法正确的个数为( )①无论x为何值,A都小于B;②若k为常数且A×(B+k)=9−4x2,则k=2;③若m为常数且mA+2B的值与x无关,则m=−2;④若A×B=2,则A2+B2=12.A. 1B. 2C. 3D. 013.若实数m,n满足|m+3|+√n+5=0,则m+n的立方根为______.14.已知2x=3,2y=5,则22x+y−1=______.15.如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图中长方形的面积S2的比是______.16.今年9月10日赶上了本世纪第一个“教师节”和“中秋节”喜相逢.为迎接“双节”的到来,某便利店购进桃片、米花糖、麻花三种特产进行销售.其中每包桃片的成本是麻花的2倍,销售每包桃片、米花糖、麻花的利润率分别是20%、30%、20%.该便利店9月10日当天销售桃片、米花糖、麻花三种特产的数量之比为3:5:4,三种特产的总利润率是25%,若每包米花糖的成本是m元,则每包麻花的成本为______元.17.计算:(1)√−83+√9+(−1)2022+(−√2)2;(2)0.256×212−(13)4×(−3)5.18.如图,在四边形ABCD中.点E为AB延长线上一点,点F为CD延长线上一点,连接EF,交BC于点G,交AD于点H,若∠1=∠2,∠A=∠C,求证:∠E=∠F.证明:∵∠1=∠3(______),∠1=∠2(已知).∴______=______(等量代换).∴AD//BC(______).∴∠A+∠4=180°(______).∵∠A=∠C(已知),∴∠C+∠4=180°(等量代换).∴______//______(同旁内角互补,两直线平行).∴∠E=∠F(______).19.计算:(1)−(a2b)3+2a2b⋅(−3a2b)2;(2)(x+1)2(x−1)2(x2+1)2.20.先化简,再求值:(a−2b)(a+b)−(a+2b)(a−2b)−(a−b)2,其中a、b满足a=√1−b+√b−1−2.21.已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p−q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.22.为降低空气污染,919公交公司决定全部更换节能环保的燃气公交车,计划购买A型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你利用方程组或不等式组设计一个总费用最少的方案,并说明总费用最少的理由.23.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:______.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=20,ab+ac+bc=100,则a2+ b2+c2=______.(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形,m张边长分别为a、b的长方形纸片拼出一个长方形或正方形,直接写出m的所有可能取值.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:______.24.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果a≤b≤c≤d,那么我们把这个四位正整数叫做“进步数”,例如四位正整数1234:因为1<2<3<4,所以1234叫做“进步数”.(1)写出四位正整数中的最大的“进步数”与最小的“进步数”;(2)已知一个四位正整数m是“进步数”,m的千位、个位上的数字分别是1、8,且m能被9整除,求这个四位正整数m.25.已知四边形ABCD,AB//CD,∠A=∠C.(1)如图1,求证:AD//BC;(2)如图2,点E是BA延长线上的一点,连接CE,∠ABC的平分线与∠ECD的平分线相交于点P.∠BCE;求证:∠BPC=90°−12(3)如图3,在(2)的条件下,CE与AD,BP分别相交于点F,G.CQ平分∠BCD,∠AFE=∠BPC,∠D=4∠DCP.求∠GCQ的度数.答案和解析1.【答案】A≈−0.666…,【解析】解:∵−√4=−2,π≈3.14,−23∴最小的数是−√4,故选:A.根据“正数大于0,负数小于0,正数大于一切负数,两个负数比较,绝对值大的反而小”进行解答即可.本题考查实数的大小比较,算术平方根,掌握“正数大于0,负数小于0,正数大于一切负数,两个负数比较,绝对值大的反而小”是正确解答的关键.2.【答案】C【解析】解:∵(±3)2=9,∴9的平方根为±3.故选C根据平方根的概念,推出9的平方根为±3.本题主要考查平方根的定义,关键在于推出(±3)2=9.3.【答案】B【解析】解:A、幂的乘方底数不变指数相乘,故A错误;B、合并同类项系数相加字母及指数不变,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选:B.根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.【答案】B【解析】解:A、无限不循环小数都是无理数,故不合题意;B、实数与数轴上的点是一一对应的,故符合题意;C、无理数分为正无理数、负无理数,0是有理数,故不合题意;D、无理数的平方不一定是无理数,如(√2)2=2是有理数,故不合题意;故选:B.根据实数的定义逐一判断即可.此题考查的是实数,有理数和无理数统称实数.5.【答案】C【解析】解:A、(x+y)2=x2+2xy+y2,故选项错误;B、(x−y)2=x2−2xy+y2,故选项错误;C、(−x+y)2=x2−2xy+y2,故选项正确;D、(x+2y)(x−2y)=x2−4y2,故选项错误.故选:C.原式各项利用完全平方公式及平方差公式计算得到结果,即可做出判断.此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.6.【答案】C【解析】【分析】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.利用”夹逼法“得出√17的范围,继而也可得出√17+1的范围.【解答】解:∵√16<√17<√25,∴4<√17<5,∴5<√17+1<6.故选C.7.【答案】C【解析】解:∵4x 2−(k −2)x +25是一个完全平方式, ∴k −2=±20,解得:k =22或k =−18, 故选:C .利用完全平方公式的结构特征判断即可求出k 的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:由题意可得, {x +y =1363x =6y , 故选:C .根据题意可知:生产玩偶A 的布的米数+生产玩偶B 的布的米数=总的布的米数,一个盲盒搭配2个玩偶A 和3个玩偶B ,然后即可列出相应的二元一次方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.9.【答案】C【解析】解:∵x +y =1,x 2+y 2=2, ∴(x +y)2=12, ∴x 2+2xy +y 2=1,∴2xy =1−(x²+y2)=1−2=−1,即xy =−12, x 4+y 4=(x 2+у2)2−2x 2у2=22−2x(一12)2=4−12=72.故选:C .先把等式x +y =1的两边平方,再变形,得到xy 的值,再把x 4+y 4利用完全公式变形,最后整体代入求值.本题考查运用完全平方公式分解因式,公式变形的运用是解题的难点和关键.10.【答案】D【解析】解:∵(x−1)(x5+x4+x3+x2+x+1)=0.∴x6−1=0.∴x6=1.∴(x3)2=1.∴x3=±1.∴x=±1.当x=1时,原式=12021−1=0.当x=−1时,原式=12021−1=−2.故选:D.先根据规律求x的值,再求代数式的值.本题考查通过规律解决数学问题,发现规律,求出x的值是求解本题的关键.11.【答案】D【解析】解:{x+152≥x+3①4x+1≥a②,解不等式①,得x≤9,解不等式②,得x≥a−14,所以不等式组的解集是a−14≤x≤9,∵a为整数,不等式组有且仅有6个整数解,∴3<a−14≤4,解得:13<a≤17,解方程2y+a3−y+a2=1得:y=6+a,∵y>21,∴6+a>21,解得:a>15,∴15<a≤17,∵a为整数,∴a为16或17,16+17=33,故选:D.先求出不等式组的解集,根据已知条件求出a的范围,求出方程的解,根据y>21求出a的范围,求出公共部分,再求出a的整数解,最后求出答案即可.本题考查了解一元一次方程,解一元一次不等式组和不等式组的整数解等知识点,能根据不等式的解集求出不等式组的解集是解此题的关键.12.【答案】B【解析】解:①当x=0时,A=3,B=1,此时A大于B,故①选项不符合题意;②由A×(B+k)=9−4x2,得−4x2+(4−2k)x+3+3k=−4x2+9,∴4−2k=0,3+3k=9,∴k=2,故②选项符合题意;③∵mA+2B=(−2m+4)x+3m+2的值与x无关,∴−2m+4=0,∴m=2,故③选项不符合题意;④若A×B=2,则−4x2+4x+3=2,∴4x2−4x=1,∴A2+B2=8x2−8x+10=2+10=12,故④选项符合题意;故选:B.把相应的整式代入,再利用单项式乘多项式的法则,以及合并同类项的法则进行运算即可.本题主要考查多项式乘多项式,整体思想的应用,解答的关键是理解清楚题意.13.【答案】−2【解析】解:根据题意得,m+3=0,n+5=0,解得m=−3,n=−5,所以m+n=−3+(−5)=−8,因为−8的立方根为−2,所以m+n的立方根为−2.故答案为:−2.根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质.掌握非负数的性质:“几个非负数的和为0时,这几个非负数都为0”是解题的关键.14.【答案】452【解析】【分析】本题考查了同底数幂的乘除法,熟记法则并根据法则计算是解题关键.根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:22x+y−1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=452,故答案为452.15.【答案】23【解析】解:设(1)中长方形的长为a,宽为b,(2)中长方形的长为y,宽为x.则AD=3b+2y=a+x.第一种覆盖方式中阴影部分的周长为:2(3b+2y+DC−x)=6b+4y+2DC−2x=2a+2DC.第二种覆盖方式中有一部分的周长为:2(a+x+DC−3b)=2a+2x+2DC−6b=2a+2x+2DC−2(a+x−2y)=2DC+4y.∵两种方式周长相同.∴2a+2DC=2DC+4y.∴a=2y.∵3b+2y=a+x.∴x=3b.∴S1:S2=ab:xy=2y×x3:(xy)=23.故答案为:2.3先表示周长,再求面积的比值.本题考查完全平方公式的几何背景,正确用字母表示周长是求解本题的关键.16.【答案】1m2【解析】解:设该店9月10日销售桃片、米花糖、麻花的数量分别为3x,5x,4x,每包麻花的成本为y元,每包米花糖的成本为m元,则每包桃片的成本是2y元,由题意得:20%⋅2y⋅3x+30%⋅m⋅5x+20%⋅y⋅4x=25%(6xy+5mx+4xy),整理得,m=2y,m,∴y=12m.故答案为:12先根据比例设该店9月10日销售桃片、米花糖、麻花三种特产的数量分别为3x,5x,4x,每包麻花的成本为y元,每包米花糖的成本为m元,则每包桃片的成本是2y元,由三种特产的总利润是总成本的25%列方程可得m=3y,从而解答此题.本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解.17.【答案】解:(1)原式=−2+3+1+2=4;(2)原式=(0.25×4)6−(1)4×(−3)4×(−3)3=1−[1×(−3)]4×(−3)3=1+3=4.【解析】(1)直接利用立方根的性质以及有理数的乘方运算法则、二次根式的性质分别化简,进而计算得出答案;(2)直接利用积的乘方运算法则、幂的乘方运算法则将原式变形,进而计算得出答案.此题主要考查了实数的运算以及积的乘方运算、幂的乘方运算,正确掌握相关运算法则是解题关键.18.【答案】对顶角相等∠2∠3同位角相等,两直线平行两直线平行,同旁内角互补CF EA两直线平行,内错角相等【解析】证明:∵∠1=∠3(对顶角相等),∠1=∠2(已知),∴∠2=∠3(等量代换),∴AD//BC(同位角相等,两直线平行),∴∠A+∠4=180°(两直线平行,同旁内角互补),∵∠A=∠C(已知),∴∠C+∠4=180°(等量代换),∴CF//EA(同旁内角互补,两直线平行),∴∠E=∠F(两直线平行,内错角相等),故答案为:对顶角相等;∠2;∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;CF,EA;两直线平行,内错角相等.应用平行线的判定与性质进行求解即可得出答案.本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.19.【答案】解:(1)−(a2b)3+2a2b⋅(−3a2b)2;=−a6b3+2a2b⋅9a4b2=−a6b3+18a6b3=17a6b3;(2)(x+1)2(x−1)2(x2+1)2=[(x+1)(x−1)]2(x2+1)2=(x2−1)(x2+1)=x4−1.【解析】(1)先算乘方,后算乘法,最后算加法;(2)先用积的乘方计算,后用平方差公式.本题主要考查了平方差公式和幂的乘方与积的乘方、单项式与单项式相乘,熟练掌握公式的应用及幂的乘方与积的乘方、单项式与单项式运算法则,整体思想是解题关键.20.【答案】解:(a −2b)(a +b)−(a +2b)(a −2b)−(a −b)2=a 2−ab −2b 2−(a 2−4b 2)−(a 2−2ab +b 2)=a 2−ab −2b 2−a 2+4b 2−a 2+2ab −b 2=−a 2+ab +b 2,∵b −1≥0,1−b ≥0,解得:b =1,∴a =−2,∴当a =−2,b =1时,原式=−(−2)2−2×1+12=−4−2+1=−5.【解析】利用整式的相应的法则对式子进行整理,再结合二次根式有意义的条件可求得a ,b 的值,再代入相应的值运算即可.本题主要考查整式的混合运算,二次根式有意义的条件,解答的关键是对相应的运算法则的掌握.21.【答案】解:(1)根据题意可知:B =(x +2)(x +a)=x 2+(a +2)x +2a ,∵B 中x 的一次项系数为0,∴a +2=0,解得a =−2.(2)设A 为x 2+tx +1,则(x +2)(x 2+tx +1)=x 3+px 2+qx +2,∴{p =t +2q =2t +1, ∴2p −q =2(t +2)−(2t +1)=3;(3)B 可能为关于x 的三次二项式,理由如下:∵A 为关于x 的二次多项式x 2+bx +c ,∴b ,c 不能同时为0,∵B =(x +2)(x 2+bx +c)=x 3+(b +2)x 2+(2b +c)x +2c .当c =0时,B =x 3+(b +2)x 2+2bx ,∵b 不能为0,∴只能当b +2=0,即b =−2时,B 为三次二项式,为x 3−4x ;当c ≠0时,B =x 3+(b +2)x 2+(2b +c)x +2c .只有当{b +2=02b +c =0,即{b =−2c =4时,B 为三次二项式,为x 3+8. 综上所述:当{b =−2c =0或{b =−2c =4时,B 为三次二项式. 【解析】(1)根据题意列出B =(x +2)(x +a)=x 2+(a +2)x +2a ,根据B 中x 的一次项系数为0,进而可得a 的值;(2)根据B 为x 3+px 2+qx +2,可以设A 为x 2+tx +1,根据多项式x +2与另一个多项式A 的乘积为多项式B ,即可用含t 的式子表示出p 和q ,进而可得2p −q 的值;(3)根据A 为关于x 的二次多项式x 2+bx +c ,可得b ,c 不能同时为0,分两种情况:当c =0时,B =x 3+(b +2)x 2+2bx ,当c ≠0时,B =x 3+(b +2)x 2+(2b +c)x +2c.可得b 和c 的值. 本题考查了多项式乘多项式、整式的加减,解决本题的关键是掌握整式的加减.22.【答案】解:(1)依题意得:{a +2b =4002a +b =350, 解得:{a =100b =150. 答:a 的值为100,b 的值为150.(2)总费用最少的购买方案为:购买A 型公交车8辆,B 型公交车2辆,理由如下:设购买A 型公交车m 辆,则购买B 型公交车(10−m)辆,依题意得:{100m +150(10−m)≤120060m +100(10−m)≥680, 解得:6≤m ≤8.又∵m 为整数,∴m 可以为6,7,8.当m =6时,10−m =10−6=4,购买总费用为100×6+150×4=1200(万元);当m =7时,10−m =10−7=3,购买总费用为100×7+150×3=1150(万元);当m =8时,10−m =10−8=2,购买总费用为100×8+150×2=1100(万元).答:总费用最少的购买方案为:购买A 型公交车8辆,B 型公交车2辆.【解析】(1)利用总价=单价×数量,结合“购买A型公交车1辆,B型公交车2辆,共需400万元;购买A型公交车2辆,B型公交车1辆,共需350万元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)总费用最少的购买方案为:购买A型公交车8辆,B型公交车2辆,设购买A型公交车m辆,则购买B型公交车(10−m)辆,根据“购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数,即可得出m的值,再利用总价=单价×数量,可求出各购买方案所需总费用,比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.【答案】(a+b+c)2=a2+b2+c2+2ab+2bc+2ac200x3−x=x(x+1)(x−1)【解析】解:(1)∵边长为(a+b+c)的正方形的面积为:(a+b+c)2分部分来看的面积为a2+b2+c2+2ab+2bc+2ac两部分面积相等.故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac=a2+b2+c2+2(ab+bc+ac),∵a+b+c=20,ab+ac+bc=100,∴202=a2+b2+c2+2×100,∴a2+b2+c2=400−200=200,故答案为:200.(3)由题意可得,所拼成的长方形或正方形的面积为:2a2+3b2+mab从因式分解的角度看,可分解为(2a+b)(a+3b)或(2a+3b)(a+b)∴(2a+b)(a+3b)=2a2+3b2+7ab或(2a+3b)(a+b)=2a2+3b2+5ab∴m=5或7.(4)∵原几何体的体积=x3−1×1⋅x=x3−x,新几何体的体积=(x+1)(x−1)x,∴x3−x=(x+1)(x−1)x.故答案为:x3−x=x(x+1)(x−1).(1)利用等面积法确定恒等式;(2)利用(1)中结论求解;(3)利用所拼成的长方形或正方形的面积从因式分解的角度进行解答;(4)利用体积关系求关于x的恒等式.本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.24.【答案】解:(1)根据题意a≤b≤c≤d,∴四位正整数中,最大的“进步数”是9999,最小的“进步数”是1111,故答案为:9999;1111;(2)根据题意a≤b≤c≤d,且四位“进步数”m的千位、个位上的数字分别是1、8,∴这个“进步数”m如下:①当b=1时,c取1≤c≤8中的整数,这个进步数可能是1118,1128,1138,1148,1158,1168,1178,1188;其中,只有1188是9的倍数;②当b=2时,c取2≤c≤8中的整数,这个进步数可能是1228,1238,1248,1258,1268,1278,1288;其中,没有9的倍数;③当b=3时,c取3≤c≤8中的整数,这个进步数可能是1338,1348,1358,1368,1378,1388;其中,只有1368是9的倍数;④当b=4时,c取4≤c≤8中的整数,这个进步数可能是1448,1458,1468,1478,1488;其中,只有1458是9的倍数;⑤当b=5时,c取5≤c≤8中的整数,这个进步数可能是1558,1568,1578,1588;其中,没有9的倍数;⑥当b=6时,c取6≤c≤8中的整数,这个进步数可能是1668,1678,1688;其中,没有9的倍数;⑦当b=7时,c取7≤c≤8中的整数,这个进步数可能是1778,1788;其中,没有9的倍数;⑧当b=8时,c=8,这个进步数可能是1888;不是9的倍数;∴这个四位正整数m是1118或1368或1458.【解析】(1)根据“进步数”的概念分析最大数和最小数;(2)根据“进步数”的概念和千位、个位上的数字分别是1、8,且m能被9整除,分情况分析求解.本题考查新定义的理解,理解新定义的“进步数”的概念,利用分类讨论思想解题是关键.25.【答案】解:(1)∵AB//CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠B+∠A=180°,∴AD//BC;(2)∵BP平分∠ABC,CP平分∠ECD,∴∠ABC=2∠PBC,∠ECD=2∠ECP,∵∠ABC+∠BCD=180°,∴2∠PBC+∠BCE+2∠ECP=180°,∠BCE+∠ECP=90°,即:∠PBC+12∵∠BPC+∠PBC+∠BCE+∠ECP=180°,∠BCE=90°,∴∠BPC+12∠BCE;∴∠BPC=90°−12(3)∵∠AFE=∠BPC,∠BPC=90°−1∠BCE;2∠BCE,∴∠AFE=90°−12∵AD//BC,∠BCE;∴∠BCE=∠AFE=90°−12解得∠BCE=60°,∴∠AFC=180°−∠BCE=120°,∠BPC=60°,∵∠AFC=∠D+∠DCE,∠D=4∠DCP,∴4∠DCP+∠DCE=120°,∵∠DCE=2∠DCP,∴6∠DCP=120°,解得∠DCP=∠ECP=20°,∴∠B=∠D=80°,∴∠PCB=40°,∵∠PCB+∠P+∠BCP=180°,∴∠BCP=180°−40°−60°=100°,∵CQ平分∠BCP,∴∠BCQ=50°,∴∠GCQ=∠BCE−∠BCQ=60°−50°=10°.【解析】(1)根据平行线的性质可得∠B+∠C=180°,进而可证∠B+∠A=180°,再利用平行线的判定可证明结论;(2)由角平分线的定义结合三角形的内角和定理可得:∠PBC+1∠BCE+∠ECP=90°,∠BPC+2∠PBC+∠BCE+∠ECP=180°,两式相减可得∠BPC+1∠BCE=90°,进而可证明结论;2(3)结合(2)的结论及平行线的性质可求解∠BPC=∠BCE=60°,利用三角形外角的性质可得∠DCP=∠ECP=20°,即可求得∠PCB=40°,根据三角形的内角和定理可求得∠BCP=100°,再由角平分线的定义可得∠BCQ=50°,进而可求解∠GCQ的度数.本题主要考查角平分线的定义,平行线的性质与判定,三角形的内角和定理,三角形外角的性质等知识的综合运用,灵活运用相关定义与性质求解角的度数是解题的关键.。
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
2024-2025学年八年级数学上学期第一次月考卷(南京专用)(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版八年级上册第1章-第2章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A.B.C.D.【答案】D【详解】解:A,B,C选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.2.如图,A ABC B C ¢¢¢≌△△,其中36A Ð=°,24а=C ,则B ¢Ð=( )A .60°B .100°C .120°D .135°【答案】C 【详解】解:∵36A Ð=°,24а=C ,∴180120B A C Ð=°-Ð-Ð=°,∵A ABC B C ¢¢¢≌△△,∴120B B ¢Ð=Ð=°;故选C .3.如图所示,为了测量出河两岸A 、B 两点之间的距离,在地面上找到一点C ,连接BC ,AC ,使90ACB Ð=°,然后在BC 的延长线上确定点D ,使CD BC =,连接,此时可以证明ABC ADC △≌△,所以只要测量出的长度也就得到了A 、B 两点之间的距离,这里判定ABC ADC △≌△的理由是( )A .AASB .SASC .ASAD .SSS【答案】B 【详解】解:∵AC BD ^,∴90ACB ACD Ð=Ð=°,在ACB V 和ACD V 中,AC AC ACB ACDBC CD =ìïÐ=Ðíï=î∴()SAS ABC ADC V V ≌,故选:B .4.等腰三角形的一个角是40°,则它的顶角是( )A .40°B .70°C .100°D .40°或100°【答案】D【详解】解:当40°角为顶角时,则顶角为40°,当40°角为底角时,则两个底角和为80°,求得顶角为18080100°-°=°,故选:D .5.如图,在ABC V 中,AB 的垂直平分线DM 交BC 于点D ,边AC 的垂直平分线EN 交BC 于点E .已知ADE V 的周长为8cm ,则BC 的长为( )A .4cmB .5cmC .6cmD .8cm6.如图, ,AD BE 是 ABC V 的高线,AD 与BE 相交于点F .若6AD BD == ,且 ACD V 的面积为12,则AF 的长度为( )A .1B .32C .2D .3【答案】C7.如图,6cm BC =,60PBC QCB Ð=Ð=°,点M 在线段CB 上以3cm/s 的速度由点C 向点B 运动,同时,点N 在射线CQ 上以1cm/s 的速度运动,它们运动的时间为()s t (当点M 运动结束时,点N 运动随之结束).在射线BP 上取点A ,在M 、N 运动到某处时,有ABM V 与MCN △全等,则此时AB 的长度为( )A .1cmB .2cm 或9cm 2C .2cmD .1cm 或9cm 2【答案】D 【详解】解:①若N ABM MC V △≌,则BM CN =,AB CM =,可得:63t t =-,3AB t =,解得: 1.5t =, 4.5cm AB =;②若ABM NCM V V ≌,则BM CM =,AB CN =,可得:363t t =-,AB t =,8.如图,ABC V 中,3AC DC ==,BAC Ð的角平分线AD BD ^于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值( )A .1.5B .3C .4.5D .990HAD Ð=°,第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
初中数学八年级上学期第一次月考试卷(一)一、选择题(本大题共10小题,每小题3分,共30分.) 1. 一个数的平方根与它的立方根相等,则这个数是( )A .0B .1C .0或1D .0或±1 2.下列图案中是轴对称图形的有( )A .4个B .3个C .2个D .1个3.在平面直角坐标系中,点A 的坐标为A (1,2),点A 与点A '的关系关于x 轴 对称,则点A '的坐标是( )A .(-2,1)B .(-1,2)C .(-1,-2)D .(1,-2) 4. 估算43的值应在( )A.5.0~6.0之间 B.6.0~6.5之间 C.6.5~7.0之间 D.7.0~7.5之间5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的 是( )A . AM =CNB . N M ∠=∠C .AB =CD D .AM ∥CN 6.如图,把长方形ABCD 沿EF 折叠使两部分重合,若∠1=50°,则∠AEF=( )A .110°B .115°C .120°D .130° 7.等腰三角形两边长分别为8㎝和17㎝,则等腰三角形的周长为( )A.35㎝B.42㎝C.35㎝或42㎝ D 以上都不对8.如图,在ΔABC 中,D 、E 分别是边AC 、BC 上的点,若ΔADB ≌ΔEDB ≌ΔEDC ,则∠C的度数为( )A.15° B.20° C.25° D.30°第5题 第6题 第8题9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )10.如图是一只停泊在平静水面上的小船,它的"倒影"应是图中的( )二、填空题(本大题共8小题,每小题3分,共24分) 11.81的平方根是_____________.12.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.第12题 第13题13.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC=8cm ,BD=5cm ,那么D 点到直线AB 的距离是 cm 。
八年级上数学月考试题一、精心选一选, 把所选的正确答案填到下面的表格里。
(本大题共10小题,每小题3分,共30分)1.下列图案是轴对称图形的一共有( )。
A .1个 B .2个C .3个D .4个2、下列图形中,不一定是轴对称图形的是 ( ) A .等边三角形 B .等腰直角三角形 C .四边形 D .线段3、直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ( ) A 、一处 B 、两处 C 、三处 D 、四处4、在△ABC 内部取一点P ,使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的( )的交点A 、角平分线B 、高C 、中线D 、垂直平分线 5、点(3,-2)关于y 轴的对称点是( )A 、(-3,-2)B (3,2)C 、(-3,2)D 、(3,-2)6、在△ABC 和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A', ⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC ≌△A'B'C'的是 ( ) A .①②③ B .①②⑤C .①②④D .②⑤⑥7、在ΔABC 和ΔDEF 中,AB=DE ,∠A=∠D ,若证ΔABC ≌ΔDEF 还要从下列条件中补选一个,错误的选法是( )A 、∠B=∠EB 、∠C=∠FC 、BC=EFD 、 AC=DF8、如图,DE 是∆ABC 中AC 边的垂直平分线,BC= 8厘米,AB=10厘米,则∆EBC 的周长为( )厘米。
A .16 B .18 C .26 D .28cab(3题图)9、如上图所示,AE =AF ,AB =AC ,EC 与BF 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( ) A 、600 B 、700 C 、750 D 、85010、如上图所示,△ABC 与△A / B / C / 关于直线MN 对称,P 为MN 上任意一点,下列说法不正确的是( ) A . AP=A /P B . MN 垂直平分AA / ,CC / C .这两个三角形的面积相等 D .直线AB ,A / B /的交点不一定在MN 上二.细心填一填。
八年级数学月考试卷 班级 姓名 分数一、选择题 (每题3分)1. 如图1,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE 四个条件中,能证明△ABD 与△ACE 全等的条件顺序是( )A. ① ② ③B. ② ③ ④C. ① ② ④D. ③ ② ④DCB AE(3图)2. 下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D ,BC=EF; B. AB=BC ,∠B=∠E ,BE=EF; C. AB=EF ,∠A=∠D , AC=DF; D. BC=EF ,∠C=∠F , AC=DF.3. 如图,CD ⊥AB,BE ⊥AC,垂足为D 、E ,BE 、CD 相交于O 点,∠1=∠2,图中全等的三角形共有( )A.1对B.2对C. 3对D.4对4. 两个直角三角形全等的条件是( )A.一个锐角对应相等 ;B.一条对边对应相等;C .两直角边对应相等;D.两个角对应相等5. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处D.4处(7图)(5图)6. 在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠B=∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是:( )A 、BC=B ′C ′ B 、∠A=∠A ′ C 、AC=A ′C ′D 、∠C=∠C ′DC B A21OEA7. 如图,OA=OC ,OB=OD ,则图中全等三角形共有( )A 、2对B 、3对C 、4对D 、5对8. 两个三角形有两个角对应相等,正确的说法是( )A 、两个三角形全等B 、如果一对等角的角平分线相等,两三角形就全等C 、两个三角形一定不全等D 、如果还有一个角相等,两三角形就全等9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'的坐标为( ).A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)10. 在△ABC 中,∠B 的平分线与∠C 的平分线相交于O ,且∠BOC=130°,则∠A=[ ]A 50°B 60°C 80°D 100°二、填空题 (每题3分)11. 如图,已知AB =AD ,需要条件_________可得△ABC ≌△ADC ,根据是________.12. 已知线段AB ,直线CD ⊥AB 于O ,AO =OB ,若点M 在直线CD 上,则MA =______,若NA =NB ,则N 在___________上.13. 如图,已知∠CAB=∠DBA 要使△ABC ≌△BAD,只要增加的一个条件是________ (只写一个)。
2024-2025学年人教版八年级数学上册第一次月考综合练习题一、选择题(满分36分)1.下列各组中的两个图形属于全等形的是()A.B.C.D.2.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°3.如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°5.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.46.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形7.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°8.下列各组线段能组成一个三角形的是()A.3cm,5cm,10cm B.5cm,4cm,9cmC.4cm,6cm,9cm D.4cm,6cm,10cm9.如图,AC=AD,BC=BD,连接CD交AB于点E,F是AB上一点,连接FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对10.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40°B.100°C.140°D.160°11.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20B.25C.30D.3512.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM =PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题(满分12分)13.如图,一块三角形玻璃板破裂成①,②,③三块,现需要买另一块同样大小的一块三角形玻璃,为了方便,只需带第块碎片比较好.14.过多边形的一个顶点能引出7条对角线,则这个多边形的边数是.15.如图,小华从点A出发向前走10m,向右转15°,然后继续向前走10m,再向右转15°,他以同样的方法继续走下去,当他第一次回到点A时共走了m.16.如图,△ABC的面积为1,沿△ABC的中线AD1截取△ABD1的面积为S1,沿△AD1C 的中线AD2截取△AD1D2的面积为S2.按上述方法依次截取的三角形的面积分别为S3,S4…S10,则所截取的三角形的面积之和为.三、解答题(满分72分)17.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.18.如图,AD=AE,BD=CE,求证:∠B=∠C.19.等腰三角形的三边长分别为3x﹣2,4x﹣3,7,求等腰三角形的周长.20.如图,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD,垂足分别为F、E,BF=CE,AB与CD位置有什么关系并说明理由.21.如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM =AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.22.如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.(1)求证:BF=CE;(2)若△ACE的面积为4,△CED的面积为3,求△ABF的面积.23.如图(1),AB=9cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=7cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P,Q运动到何处时有△ACP与△BPQ全等,求出相应的x 的值.24.(1)如图(1),在平面直角坐标系中,将直角三角形的直角顶点放在点P(6,6)处,两直角边与坐标轴交于点A和点B.求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,如图(2)两直角边与坐标轴交于点A和点B,求OA﹣OB的值;(3)在图(2)的基础上,由点P引一条射线PG,如图(3),过点A作AM⊥PG,过点B作BN⊥PG,垂足分别为M,N,猜想AM,BN,MN之间的数量关系,并说明理由.参考答案一、选择题(满分36分)1.解:A、两个图形不全等,故此选项不合题意;B、两个图形不全等,故此选项不合题意;C、两个图形全等,故此选项符合题意;D、两个图形不全等,故此选项不合题意.故选:C.2.解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.3.解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,即OP平分∠AOB.故选:D.4.解:如图,∠ABC=∠DEA=90°,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:B.5.解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.6.解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.7.解:由题意得:∠B=50°,∠AEC=120°,又∵∠AEC=∠B+∠BAE(三角形外角的性质),∴∠BAE=120°﹣50°=70°,又∵△ABE≌△ACD,∴∠BAE=∠DAC=70°.故选:B.8.解:A、3+5<10,不能组成三角形,不符合题意;B、5+4=9,不能组成三角形,不符合题意;C、6+4>9,能组成三角形,符合题意;D、4+6=10,不能组成三角形,不符合题意.故选:C.9.解:图中全等三角形有△ACB≌△ADB,△ACF≌△ADF,△ACE≌△ADE,△BCE≌△BDE,△BCF≌△BDF,△FCE≌△FDE,共6对,故选:D.10.解:连接AA′.∵∠1=∠3+∠4,∠2=∠5+∠6,∴∠1+∠2=∠3+∠4+∠5+∠6=∠EAD+∠EA′D,∵∠EAD=∠EA′D,∴∠1+∠2=2∠EAD=160°,∴∠EAD=40°,∴∠B+∠C=180°﹣40°=140°,故选:C.11.解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3∴S△ABC=×20×3=30,故选:C.12.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴∠PEO=∠PFO=90°,在△POE和△POF中,,∴△POE≌△POF(AAS),∴OE=OF,PE=PF,在△PEM和△PFN中,,∴△PEM≌△PFN(ASA),∴EM=NF,PM=PN,故①正确,=S△PNF,∴S△PEM=S四边形PEOF=定值,故④正确,∴S四边形PMON∵OM+ON=OE+ME+(OF﹣NF)=2OE,是定值,故②正确,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,故③错误,故选:B.二、填空题(满分12分)13.解:只需带上③即可,因为③中,可以测量出三角形的两角以及夹边的大小,三角形的形状和大小是确定的,故答案为:③.14.解:∵多边形从一个顶点出发可引出7条对角线,∴n﹣3=7,解得n=10.故答案为:1015.解:易得此几何体为正多边形,每个外角为15°,∴这个多边形的边数为360°÷15=24,∴当他第一次回到点A时共走了24×10=240m.16.解:∵沿△ABC的中线AD1截取△ABD1的面积为S1,△ABC的面积为1,∴△ABD1的面积S1=,∵沿△AD1C的中线AD2截取△AD1D2的面积为S2.∴△AD1D2的面积S2=,同理可得:S3=,S4=,S n=,所截取的三角形的面积之和=…=.故答案为:.三、解答题(满分72分)17.解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.18.证明:∵AD=AE,BD=CE,∴AD+BD=AE+CE,即AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.19.解:①当3x﹣2是底边时,则腰长为:4x﹣3,7,∴4x﹣3=7,∴x=2.5,∴3x﹣2=5.5,∴等腰三角形的周长=7+7+5.5=19.5;②当4x﹣3是底边时,则腰长为:3x﹣2,7,∴3x﹣2=7,∴x=3,∴4x﹣3=9,∴等腰三角形的周长=7+7+9=23;③当7是底边时,则腰长为:3x﹣2,4x﹣3,∴3x﹣2=4x﹣3,∴x=1,∴3x﹣2=1,4x﹣3=1,∵1+1<7,∴不能构成三角形.则三角形的周长为19.5或23.20.解:AB∥CD,理由如下:∵AE=DF,∴AE+EF=DF+EF,∵BF⊥AD,CE⊥AD,∴∠BFA=∠CED=90°,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠A=∠D,∴AB∥CD.21.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.22.解:(1)∵CE⊥AD,BF⊥AF,∴∠CED=∠BFD=90°,∵AD是△ABC的中线,∴BD=CD,在△CED和△BFD中,,∴△CED≌△BFD(AAS),∴BF=CE;(2)∵AD是△ABC的中线,=S△ACD,∴S△ABD=4,S△CED=3,∵S△ACE=S△ABD=7,∴S△ACD∵△BFD≌△CED,=S△CED=3,∴S△BDF=S△ABD+S△BDF=7+3=10.∴S△ABF23.解:(1)△ACP≌△BPO;理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵t=1时,AP=BQ=2cm,∴BP=AB﹣AP=9﹣2=7(cm),∵AC=7cm,∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS);(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:7=9﹣2t,2t=xt,解得:x=2,t=1,此时AP=BQ=2cm;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:7=xt,2t=9﹣2t,解得:,,此时,BQ=7cm;综上所述,当点P,Q运动到AP=BQ=2cm时,△ACP≌△BPQ,此时x的值为2;当点P,Q运动到,BQ=7cm时,△ACP≌△BQP,此时x的值为.24.解:(1)如图1,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BPA=90°,∴∠NPB=∠MPA=90°﹣∠BPM,∵P(6,6),∴PM=PN=ON=OM=6,在△PBN和△PAM中,,∴△PBN≌△PAM(ASA),∴PA=PB,BN=AM,∴OA+OB=OM+AM+OB=OM+OB+NB=6+6=12;(2)如图2,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BPA=90°,∴∠NPB=∠MPA=90°﹣∠BPM,∵P(6,6),∴PM=PN=6,在△PBN和△PAM中,,∴△PBN≌△PAM(ASA),∴PA=PB,AM=BN,∴OA﹣OB=(OM+AM)﹣(BN﹣ON)=OM+ON=6+6=12.(3)∵AM⊥PG,BN⊥PG,则∠PNB=∠PMA=90°,∵∠BPA=90°,∴∠NPB+∠MPA=∠MAP+∠MPA,∴∠NPB=∠MPA,在△PBN和△PAM中,∴△PBN≌△PAM(AAS),∴PN=AM,PM=BN,∴PM﹣PN=MN,∴BN﹣AM=MN.。
河北肥乡第二中学八年级数学上第一次月考试卷
1
1
八年级数学第一次月考试卷
一、选择题(共12题,每题3分,请填入答题卡中)
1. 4 的平方根是( ) A . 2 B . 16 C. ±2 D .±16
2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三
角形,其中正确的是 ( )
7
15
24
25
20
7
15
20
24
25
15725202425
7
20
24
15
(A)
(B)
(C)
(D)
3、点(1,3)关于x轴对称的点的坐标是( )
A.(﹣1,3) B.(﹣1,﹣3) C.(1,﹣3) D.(3,1)
4. 下列各组中,不能构成直角三角形的是( ).
A.3,4,5 B.5,12,13 C.7,24,25 D.12,15,20
5.一个正方形的面积为28,则这个正方形的边长在哪两个整数之间( )
A.3和4 B.4和5 C..5和6 D.6和7
6.下列运算正确的是( ) A.(1)1xx B.954
C.3223 D.222()abab
7. 8的立方根为( ) A.2 B.—2 C.±2 D.4
8. (-2)2的算术平方根是( )A.2 B.±2 C.-2 D.2
9.下列运算正确的是( )
A.25=±5 B.43-27=1 C. 18÷2=9 D.24·32=6
10、在平面内,确定一个点的位置一般需要的数据个数是( )
A.1 B.2 C.3 D.4
11、点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M
点的坐标为( )A. (5,3) B. (-5,3)或(5,3)
C. (3,5) D. (-3,5)或(3,5)
12、点P(13mm,)在直角坐标系的x轴上,则点P的坐标为( )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
二.填空题:(每题3分,共30分,请填入答题卡中)
13.已知直角三角形的三边长为3、4、x,x为斜边,则以x为边的正方形的面
积为____ _;
14. 高为3,底边长为8的等腰三角形腰长为
15.0)5(的立方根是 ;2)3(=________,327 =_________
16.如图,矩形OABC的边OA 长为2 ,边AB长为1,OA在数轴上,以原点O为
圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是
(20题图)
(第16题图)
17.在棱长为2dm的正方体木箱中,现放入一根长4dm的铁棒,能放得进去
吗? ;
18.若a、b互为相反数,c、d互为倒数,则______3cdba;
19.在
2,3.0,10,1010010001.0,125,7
22
,0,1223
中,
有理数集合:{ };
无理数集合:{ };
20.有两棵树,一棵高6米,另一棵高2米,
两树相距5米,一只小鸟从一棵树的树梢飞
到另一棵树的树梢,至少飞了 米;
21.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那
么它所行的最短路线的长是_____________;
22.P(﹣1,2)关于x轴对称的点是 ,关于y轴对称的点是
A
B
第
21
题
图
河北肥乡第二中学八年级数学上第一次月考试卷
2
2
八年级数学第一次月考答题卡
一、选择题(共12题,每题3分,请填入答题卡中)
题
号
1 2 3 4 5 6 7 8 9 10 11 12
答
案
二.填空题:(每题3分,共30分,请填入答题卡中)
13
14.
15 , ,
16
17 ..
18
19有理数集合:{ };
无理数集合:{ };
20
21
22 ,
三.解答题:(共54分)
23、化简:(6个小题,每题4分,共24)
(1)44.1-21.1; (2)2328;
班级 姓名 学号
(3) 24612 (4) )32)(32(
(5)2)325( (6)2258932
24、(6分)在平面直角坐标系中描出下列各点,并将它们依次用线段连接起来
A(0,3),B(1,0),C(2,3),D(3,0),E(4,3)。
点A和点D是同一个点吗?
河北肥乡第二中学八年级数学上第一次月考试卷
3
3
25、(6分)如图,以等腰梯形ABCD的顶点D为原点建立直角坐标系,若AB=4,CD=10,AD=5,求图中各顶点的坐标。 27. (6分)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米, (1)这个梯子的顶端距地面有多高? (2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米? 26.(6分)已知x+3与2x-15是a的平方根,求a的值。
28.(6分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头
顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每
小时飞行多少千米?
A
CC
B
A