玻璃纤维增强聚碳酸酯研究
- 格式:ppt
- 大小:183.50 KB
- 文档页数:21
上海席亚高分子材料有限公司地址:上海市浦东新区瑞祥路125号 客户热线:400‐ 602‐ 1223 传真:021 3325 0700 公司网址:TG-2620 长纤增强聚碳酸酯树脂TG-2620 长纤增强聚碳酸酯树脂一、产品说明:THEA TG-2620玻纤增强聚碳酸酯树脂是严格按照上海市《聚碳酸酯树脂及其系列产品Q/GHPE 3-92标准》生产的长纤增强材料。
我司依靠超过20年的聚碳酸酯生产经验,优选国内外多种最适合牌号的聚碳酸酯树脂,与无水长纤及稳定剂通过双螺杆挤出混炼工艺,生产出质量稳定、可靠性高的系列聚碳酸酯改性产品。
为航天、军工、电子、医疗器械等行业指定产品,具有良好的信誉。
二、特性:● 质量稳定性优异● 产品不变形● 产品不开裂● 电性能优异● 耐温性好● UL94-V0阻燃等级● 符合REACH、RoHs三、用途:本品为含玻纤20%的增强型聚碳酸酯。
其机械强度高、适用于注射、挤出、压制成型。
其优异的抗冲性能和尺寸稳定性,使其适用于机械性能要求极高的领域,发挥功能性作用,以及代替沉重的金属零件。
典型的用途为电子电力连接件、线槽、胶版、电容器壳体、代金属零件、体育休闲用品等。
四、包装与运输:包装在内衬聚乙烯塑料袋的编织袋内,一般包装为25kg,也可根据用户要求指定包装。
运输时要避免防潮、受污和曝晒在太阳光下,并要轻取轻放,以免包装破裂。
五、产品技术指标:项目 指标 检测结果 外观 浅黄色半透明颗粒 浅黄色半透明颗粒玻璃纤维含量 % ≥18 20 共混后树脂分子量 ≥ 2.1×104 2.1×104拉伸强度 MPA ≥100 113 缺口冲击强度 KJ/㎡ ≥10 12 热变形温度 ℃ ≥138 140 体积电阻率 Ω. CM ≥ 5×1015 6×1015介电常数 (106 HZ )3.2‐3.6 3.3 介电损耗角正切 (106 HZ )《 1.2×10‐2 1.1×10‐2六、储存与保质期:存储在通风、干燥的库房内,不要与易燃物品和腐蚀物品堆放在一起。
pc加玻纤常用比例
PC加玻璃常用比例
在现代工业生产中,聚碳酸酯(PC)加玻璃纤维常用比例是一种常见的材料组合。
PC加玻璃纤维的制造工艺和使用范围广泛,其优异的物理性能和工程应用价值备受认可。
PC加玻璃纤维常用比例通常是将聚碳酸酯与玻璃纤维按照一定的配比混合而成。
这种比例通常是根据具体的应用需求来确定的,以达到最佳的性能和经济效益。
PC材料具有优异的透明性、耐热性、抗冲击性和机械强度,而玻璃纤维则具有优异的强度、刚性和耐腐蚀性。
将二者合理地结合起来,可以充分发挥各自的优势,提高材料的性能和使用寿命。
在汽车制造领域,PC加玻璃纤维常用比例被广泛应用于车身部件、内饰件和安全设施等方面。
这种材料组合不仅能够提供良好的结构强度和抗冲击性能,还能有效降低整车重量,提高燃油经济性。
在电子电器领域,PC加玻璃纤维常用比例被应用于手机外壳、电视机壳体和电脑外壳等产品中。
这种材料组合不仅能够提供良好的耐热性和抗老化性能,还能有效阻隔电磁波和静电,提高产品的可靠性和安全性。
PC加玻璃纤维常用比例还被广泛应用于建筑领域、航空航天领域和
医疗器械领域等。
这种材料组合的优异性能和广泛应用使得PC加玻璃纤维成为现代工业生产中不可或缺的材料选择。
PC加玻璃纤维常用比例在工业生产中具有重要的应用价值。
通过合理地调配PC和玻璃纤维的比例,可以充分发挥材料的优势,提高产品的性能和可靠性。
随着科技的不断进步和工艺的不断改进,PC 加玻璃纤维的应用前景将更加广阔。
聚碳酸酯的改性原理聚碳酸酯是一类常用的工程塑料,具有优异的物理性能和化学稳定性,在工业生产和日常生活中有着广泛的应用。
然而,为了满足不同领域对聚碳酸酯材料性能的需求,常常需要进行改性处理,以增强其特定性能或改善其加工性能。
接下来将介绍聚碳酸酯改性的原理及常见方法。
聚碳酸酯的特性聚碳酸酯具有优异的高强度、高韧性、良好的透明性和耐热性等特点,但也存在一些局限性,比如耐疲劳性和耐老化性相对较弱。
因此,对聚碳酸酯进行改性处理可以充分利用其优点,并改善其缺点。
改性原理一般来说,聚碳酸酯的改性原理可以从以下几个方面入手:添加填料添加填料是常见的一种改性方法,通过向聚碳酸酯中添加纳米级或微米级的填料,如纳米粒子、碳纤维、玻璃纤维等,可以显著提高聚碳酸酯的强度、刚性和热稳定性,同时改善其阻燃性能和耐磨性能。
共混改性共混改性是将聚碳酸酯与其他树脂或添加剂进行混合,形成复合材料的一种方法。
通过共混可以有效提高聚碳酸酯的力学性能、耐热性和耐化学性,同时还可以调整其加工性能和外观表面特性。
化学改性化学改性是指通过聚合反应、交联反应或化学修饰等手段改变聚碳酸酯分子结构,以实现特定性能的调控。
比如,在聚碳酸酯结构中引入不饱和双键、极性基团等,可以显著改善其耐候性、耐老化性等特性。
表面改性表面改性是指对聚碳酸酯材料表面进行物理或化学处理,以改善其表面性能。
比如采用等离子体表面改性、溶液沉积、真空蒸镀等技术,可以提高聚碳酸酯的耐磨性、耐化学腐蚀性、降低摩擦系数等。
常见改性方法根据不同的需求,选择适合的改性方法可以实现对聚碳酸酯的有针对性改进。
常见的改性方法包括:玻璃纤维增强改性、硅烷偶联剂改性、导电填料改性、抗紫外线添加剂改性等。
玻璃纤维增强改性可以显著提高聚碳酸酯的弯曲强度和冲击性能,适用于需要较高强度和刚性的领域;硅烷偶联剂改性可以增加聚碳酸酯与填料之间的结合力,提高其耐热性和耐溶剂性;导电填料改性可以赋予聚碳酸酯导电性,适用于静电防护等领域。
pc3412r成分一、成分PC3412R是一种加20%玻璃纤维增强聚碳酸酯,具有较好的力学性能,UL94V-1的额定电流为0.058。
此外,它还增加了内部脱模剂。
二、具体介绍聚碳酸酯(简称pc)是分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。
其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用。
目前仅有芳香族聚碳酸酯获得了工业化生产。
由于聚碳酸酯结构上的特殊性,现已成为五大工程塑料中增长速度较快的通用工程塑料。
PC是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可两者皆有。
双酚a型PC是重要的工业产品。
PC是几乎无色的玻璃态的无定形聚合物,有很好的光学性。
PC高分子量树脂有很高的韧性,悬臂梁缺口冲击强度为600~900j∕m,未填充牌号的热变形温度大约为130。
c,玻璃纤维增强后可使这个数值增加10°c。
pc的弯曲模量可达240OmPa以上,树脂可加工制成大的刚性制品。
低于100o C时,在负载下的蠕变率很低。
PC耐水解性差,不能用于重复经受高压蒸汽的制品。
PC主要性能缺陷是耐水解稳定性不够高,对缺口敏感,耐化学品性,耐刮痕性较差,长期暴露于紫外线中会发黄。
和其他树脂一样,pc容易受某些溶剂的浸浊。
PC材料具有阻燃性,耐磨。
耐氧化性。
分类:防静电pc,导电pc,加纤防火pc,耐紫外线耐候pc,食品级pc,抗化学性PCo主要优点:1、具高强度及弹性系数、高冲击强度、使用温度范围广;2、高度透明性及自由染色性;3、成形收缩率低、尺寸稳定性良好;4、耐疲劳性佳;5、耐候性佳;6、电气特性优;7、无味无臭对人体无害符合卫生要求。
主要性能:a、机械性能:强度高、耐疲劳性、尺寸稳定、蠕变也小(高温条件下也极少有变化);b、耐热老化性:增强后的ul温度指数达12(Γ140C(户外长期老化性也很好);c、耐溶剂性:无应力开裂;d、对水稳定性:高温下遇水易分解(高温高湿环境下使用需谨慎);e›电气性能:1、绝缘性能:优良(潮湿、高温也能保持电性能稳定,是制造电子、电气零件的理想材料);2、介电系数:3.0-3.2;3、耐电弧性:120s;f、成型加工性:普通设备注塑或挤塑。
聚碳酸酯的改性
背景介绍
聚碳酸酯是一种重要的工程塑料,具有优异的物理性能和化学性能,广泛应用于汽车、电子、医疗器械等领域。
然而,由于一些特定需求,常常需要对聚碳酸酯进行改性,以满足不同的应用要求。
改性方法
1. 加入增强剂
聚碳酸酯可以通过添加增强剂来改善其力学性能。
常见的增强剂包括玻璃纤维、碳纤维、纳米颗粒等。
这些增强剂能够提升聚碳酸酯的强度、刚度和耐热性,使其更适合承受高强度和高温环境下的应用。
2. 掺入抗氧化剂
在一些特定环境中,聚碳酸酯易受到氧化而降解,因此可以向其中添加抗氧化剂。
抗氧化剂的加入可以有效延长聚碳酸酯材料的使用寿命,降低其受外界环境影响的程度,提高其稳定性。
3. 进行共混改性
共混改性是将聚碳酸酯与其他塑料或添加剂进行混合,以期望获得新的性能优势。
常见的共混改性方式包括聚合物共混、合金化改性等。
通过共混改性,可以综合利用不同材料的优势,实现性能的多样化。
4. 表面处理
为了改善聚碳酸酯的表面性能,可以采用表面处理的方法。
例如,通过等离子体处理、化学涂层等手段,可以增强聚碳酸酯的表面附着力、耐磨性和耐腐蚀性,提高其在特定环境下的适用性。
改性效果与应用
通过以上改性方法,可以使聚碳酸酯材料具有更广泛的应用前景和更优异的性能表现。
改性后的聚碳酸酯可以在汽车零部件、医疗器械、电子产品外壳等领域发挥重要作用,满足不同行业对材料性能的要求。
综上所述,聚碳酸酯的改性是一个重要的研究领域,通过合理的改性方法,可以提高聚碳酸酯材料的性能和功能,拓展其应用范围,推动材料科学与工程领域的发展。
聚碳酸酯(PC)的性能聚碳酸酯(PC)是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可以两者皆有。
双酚A型PC 是最重要的工业产品。
双酚A型PC是一种无定形的工程塑料,具有良好的韧性、透明性和耐热性。
碳酸酯基团赋予韧性和耐用性,双酚A基团赋予高的耐热性。
而PC的一些主要应用至少同时要求这两种性能。
表2-30列出了通用级聚碳酸酯的性能。
表2-30 通用级聚碳酸酯的性能性能数值性能数值拉升强度/MPa60-70玻璃环转变温度/℃150拉伸率(%)60-130熔融温度/℃220-230弯曲强度/MPa100-120比热容/[J/(g.℃)]1.17弯曲弹性模量/GPa2.0-2.5热导率/[W/(m .℃)]0.24压缩强度/MPa80-90 线膨胀系数/(x10-5/℃)5-7简支梁冲击强度(缺口)/(kJ/m2) 50-70 热变形温度(1.82MPa)/℃130-140 布氏硬度150-160 热分解温度/℃≥340力学性能聚碳酸酯的缺点是耐疲劳强度较低,耐磨性较差,摩擦因数大。
聚碳酸酯制品容易产生应力开裂,内应力产生的原因主要是由于强迫取向的大分子间相互作用造成的。
如果将聚碳酸酯的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。
在一定应变下发生微观撕裂时间与应力之间的关系依赖于聚碳酸酯的平均相对分子质量。
如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。
热性能聚碳酸酯的耐热性较好,未填充聚碳酸酯的热变形温度大约为130℃,玻璃纤维增强后可使这个数值再增加10℃。
长期使用温度可达120℃,同时又具有优良的耐寒性,脆化温度为-100℃。
低于100℃时,在负载下的蠕变率很低。
聚碳酸酯没有明显的熔点,在220-230℃呈熔融状态。
基于Hallberg-Peck模型的玻璃纤维增强PC的性能与寿命卢炽华;张艳杰;卢思思;孙志端;章蓉芳;刘灵芝
【期刊名称】《塑料工业》
【年(卷),期】2022(50)7
【摘要】为研究玻璃纤维增强聚碳酸酯的性能以及应用于智能电表中的可靠性寿命,针对玻璃纤维增强聚碳酸酯进行加速老化实验。
基于温湿度对聚碳酸酯材料老化性能的影响,将制作的样条在四种不同温湿度条件下进行高温高湿存储实验,根据设定的失效判据判定失效情况,并结合Hallberg-Peck模型推算出寿命模型,为玻璃纤维增强聚碳酸酯材料在产品应用中的设计选型、质量控制和可靠性预计方面提供参考依据。
【总页数】5页(P106-109)
【作者】卢炽华;张艳杰;卢思思;孙志端;章蓉芳;刘灵芝
【作者单位】威胜集团有限公司;长沙伟泰科技有限公司
【正文语种】中文
【中图分类】TM933
【相关文献】
1.基于现场可靠性数据和组合应力寿命模型的电能表寿命预判
2.基于BP神经网络的玻璃纤维增强塑料腐蚀条件下的寿命预测
3.基于PC的控制增强自动化的可能性
4.基于韦布尔寿命模型的血液透析机关键性部件寿命分布的研究
5.基于Hallberg-Peck模型的继电保护装置寿命评估及加速试验
因版权原因,仅展示原文概要,查看原文内容请购买。