15.1整式[上学期]
- 格式:ppt
- 大小:1.39 MB
- 文档页数:14
第十五章整式乘除与因式分解§15.1 整式的乘法 第同底数幂乘法学习目标⒈在推理判断中得出同底数冪乘法的运算法则,并掌握“法则”的应用. ⒉经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.⒊在组合作交流中,培养协作精神,探究精神,增强学习信心. 学习重点:同底数冪乘法运算性质的推导和应用. 学习难点:同底数冪的乘法的法则的应用. 学习过程:一、预习与新知: ⒈⑴ 阅读课本P 141-142(2)32 表示几个2相乘?23表示什么?5a 表示什么?m a 呢?(3)把22222⨯⨯⨯⨯表示成na 的形式.⒉请同学们通过计算探索规律.(1)()())(222222222243=⨯⨯⨯⨯⨯=⨯(2)35 ⨯45= )(5= (3)7)3(-⨯6)3(-= ())(3-= (4))(⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1011011013(5)3a ⨯4a = =()a⒊计算(1)32⨯42和72 ; (2)5233⨯和73(3)3a ⨯4a 和7a (代数式表示);观察计算结果,你能猜想出m a ⨯na 的结果吗?问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?⒋请同学们推算一下m a ⨯na 的结果?同底数幂的乘法法则: 二、课堂展示:(1)计算 ①310⨯410 ②3a a ⋅ ③53a a a ⋅⋅ ④x x x x ⋅+⋅22(2)计算 ①11010+⋅m n ②57x x ⋅ ③97m m m ⋅⋅ ④-4444⋅⑤()3922-⨯ ⑥12222+⋅n n⑦ y y y y ⋅⋅⋅425 ⑧532333⋅⋅三、随堂练习:(1)课本P 142页练习题(2)课本P 148页15.1第1①②,2①C 组1.计算:①10432b b b b ⋅⋅⋅ ②()()876x x x -⋅- ③()()()562x y y ----④()()()3645p p p p ⋅-+-⋅-2.把下列各式化成()ny x +或()ny x -的形式.① ()()43y x y x ++ ②()()()x y y x y x ---23③()()12+++m my x y x3.已知9x x xn m nm =⋅-+求m 的值.四.小结与反思第二课时 幂的乘方学习目标⒈理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.⒉经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.⒊培养学生合作交流意识和探索精神,让学生体会数学的应用价值. 学习重点:幂的乘方法则.学习难点:幂的乘方法则的推导过程及灵活应用. 学习过程:一.预习与新知:1填空①同底数幂相乘 不变,指数 。
§15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC•的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为12·c·h.2.小王的平均速度是St.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、12ch、St是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念)如图,正方体的表面积为_______,正方体的体积为表示一个数,则它的相反数是________(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、12ch、St中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、12ch、St这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、12ch是单项式.它们的系数分别是4、1、6、1、-1、12.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、•12ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c ,它不是单项式,和单项式有什么联系呢? 写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z .(3)三角尺的面积应是直角三角形的面积减去圆的面积,即12ab-3.14r 2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x 2+2x+18. 我们可以观察下列代数式:a+b+c 、t-5、3x+5y+2z 、12ab-3.14r 2、x 2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式? 这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c 、t-5、3x+5y+2z 、12ab-3.14r 2、x 2+2x+18都是多项式.请分别指出它们的项和次数. a+b+c 的项分别是a 、b 、c .t-5的项分别是t 、-5,其中-5是常数项. 3x+5y+2z 的项分别是3x 、5y 、2z . 12ab-3.14r 2的项分别是12ab 、-3.14r 2.x 2+2x+18的项分别是x 2、2x 、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》。
15.1 分式 (1) 《从分数到分式》说课稿一、教材分析1.地位和作用“从分数到分式”是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
2.学情分析我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。
为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。
4.教学重点与难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点(1)重点:分式的意义;分式有意义的条件;(2)难点:分式无意义、分式的值为零的条件。
二、教学方法与学法本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
人教版数学八年级上册15.1.3《整式的乘法》说课稿一. 教材分析《人教版数学八年级上册》第15.1.3节《整式的乘法》是初中数学中非常重要的一部分,主要介绍了整式乘法的基本概念和运算法则。
这部分内容是学生学习更高级数学知识的基础,也是解决实际问题的重要工具。
本节课的内容包括整式乘法的定义、运算规则以及具体的计算方法。
通过本节课的学习,学生应该能够理解和掌握整式乘法的基本概念和运算法则,并能够运用到实际问题中。
二. 学情分析在八年级的学生中,他们已经学习了整式的基本概念和运算法则,对代数知识有一定的了解。
然而,对于整式乘法这样的高级运算,他们可能还存在一些困难和模糊的地方。
因此,在教学过程中,我们需要关注学生的知识基础,针对他们的薄弱环节进行有针对性的教学。
同时,学生对于实际问题的解决能力也需要进一步的培养和提高。
三. 说教学目标本节课的教学目标包括以下三个方面:1.知识与技能:学生能够理解整式乘法的定义和运算法则,能够熟练地进行整式乘法的计算。
2.过程与方法:学生能够通过自主学习和合作交流,掌握整式乘法的基本方法,并能够将这些方法应用到实际问题中。
3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,养成良好的学习习惯和团队合作精神。
四. 说教学重难点本节课的重难点是整式乘法的运算法则和具体的计算方法。
学生需要理解并掌握整式乘法的规则,并能够灵活运用到实际问题中。
在教学过程中,我们需要针对这些重难点进行详细的讲解和辅导,帮助学生理解和掌握。
五. 说教学方法与手段在教学过程中,我们将采用多种教学方法和手段,以提高学生的学习效果和兴趣。
1.引导式教学:通过提问和引导,激发学生的思考和探究欲望,培养他们的自主学习能力。
2.合作学习:学生进行小组讨论和合作交流,让他们在互动中学习和提高。
3.实例讲解:通过具体的例题讲解,让学生理解和掌握整式乘法的计算方法。
4.练习与反馈:通过布置练习题和及时的反馈,帮助学生巩固知识,提高解题能力。
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
15.1.1 同底数幂的乘法◆随堂检测1、同底数幂相乘,底数 ,指数 ,用公式表示=n m a a (m ,n 都是正整数)2、计算32)(x x ⋅-所得的结果是( ) A.5x B.5x - C.6x D.6x - 3、下列计算正确的是( )A.822b b b =⨯ B.642x x x =+ C.933a a a =⨯ D.98a a a = 4、计算:(1)=⨯461010 (2)=⎪⎭⎫⎝⎛-⨯-6231)31((3)=⋅⋅b b b 32 (4)2y ⋅ 5y =5、若53=a ,63=b ,求ba +3的值◆典例分析例题:若125512=+x ,求()xx +-20092的值分析:此题考察对公式的灵活运用,将公式左右换位n m nm a a a ⨯=+即可解:∵1255551212=⋅=+x x∴25512552=÷=x∵2552= ∴22=x ∴1=x∴xx +-2009)2(1)1()21(201012009=-=-=+◆课下作业●拓展提高1、下面计算正确的是( ) A.4533=-a a B.nm n m +=⋅632 C.109222=⨯ D.10552a a a =⋅2、=-⋅-23)()(a b b a 。
3、()=-⋅-⋅-62)()(a a a 。
4、已知:5 ,3==n ma a ,求2++n m a 的值5、若62=-a m ,115=+b m ,求3++b a m 的值●体验中考1、(2009丽水市)计算:a 2·a 3= ( )A .a 5B .a 6C .a 8D .a92、(2009 年佛山市)数学上一般把n aa a a a个···…·记为( )A .naB .n a +C .n aD .an15.1.2 幂的乘方◆随堂检测1、幂的乘方,底数 ,指数 ,用公式表示=nm a )( (m ,n 都是正整数) 2、(江苏省)计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3、下列计算不正确的是( ) A.933)(a a = B.326)(n na a= C.2221)(++=n n x x D.623x x x =⋅4、如果正方体的棱长是2)12(+a ,则它的体积为 。
人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是整式部分的重要内容,也是学习多项式乘法、平方差公式和完全平方公式的基石。
本节课主要让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用,为后续学习更复杂的整式运算打下基础。
二. 学情分析学生在七年级时已经学习了有理数的乘法、分配律等基础知识,对于整式的加减法有一定的了解。
但是,对于整式的乘法运算,学生可能还存在着一定的困难。
因此,在教学过程中,要注重引导学生理解乘法分配律,并通过大量的练习让学生熟练掌握整式乘法的方法。
三. 教学目标1.知识与技能:让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用。
2.过程与方法:通过实例演示、自主探究、合作交流等方式,让学生经历整式乘法的过程,培养学生的运算能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:整式乘法的基本方法。
2.教学难点:乘法分配律在整式乘法中的应用。
五. 教学方法采用启发式教学法、情境教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的运算能力和思维能力。
六. 教学准备1.教师准备:熟练掌握整式乘法的方法,准备相关教学案例和练习题。
2.学生准备:掌握有理数的乘法、分配律等基础知识。
七. 教学过程1. 导入(5分钟)教师通过一个实际问题引导学生思考:已知长方形的长是10cm,宽是5cm,求长方形的面积。
学生可以很容易地得出答案,从而引出整式乘法的概念。
2. 呈现(10分钟)教师通过PPT展示整式乘法的定义和基本方法,引导学生理解整式乘法的运算规律。
例如,对于两个整式ax + b和cx + d的乘法,可以将其看作是(a c)x^2 + (a d + b c)x + b d。
3. 操练(10分钟)教师给出几个简单的整式乘法例子,让学生在纸上完成。
第一课时、同底数幂的乘法【教学内容】同底数幂的乘法【教学目标】知识与技能:在推理判断中得出同底数幂乘法的运算法则,幵掌握“法则”的应用。
过程与方法:经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力。
情感与态度:在小组合作交流中,培养协作精神、探究精神,增强学习信心。
语言积累:同底数幂乘法法则:乘积中,幂的底数不变,指数相加。
【教学重点】同底数幂乘法运算性质的推导和应用。
【教学难点】同底数幂的乘法的法则的应用。
【教学用具】课件。
【教学过程】一、创设情境,故事引入:1、情境导入:“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地乊分,盘古完成了这样一个壮丽,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流。
2、提问置疑:教师提问:盘古的左眼变成了太阳,那么,太阳离我们多进呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,•你能计算出地球距离太阳大约有多进呢?学生活动:开始动笔计算,大部分学生可以列出算式:3×105×5×102=15•×105×102=15×?二、探究学习,应用所学:1、同底数幂的乘法:教师提问:到底105×102=?讨论:同学们根据幂的意义自己推导一下,现在分小组讨论。
学生活动:分小组讨论、交流,丽手发言,上台演示。
计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10=1072、探索规律:请同学们计算幵探索规律:(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=___________________=5( );(3)(-3)7×(-3)6=_________________________=(-3)( );(4)(110)3×(110)=_____________=(110)( ); (5)a 3·a 4=__________________=a( ).提出问题:①这几道题目有什么共同特点? ②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?学生活动:独立完成,幵在黑板上演算。
课堂实录15.1整式的乘除与因式分解【情境导入】师:同学们,今天这节课我们复习整式的乘除与因式分解。
首先,回顾幂的运算性质有哪些?生:有同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法。
师:回答的对!那么,用符号如何表示呢?生:(大家积极举手)①a m·a n=a m+n(m、n为正整数)②(a m)n= a mn (m、n为正整数)③(ab)n = a n b n (n为正整数)④a m ÷a n = a m-n(a≠0,m、n都是正整数,且m>n)师:对。
补充一个:a0=1 (a≠0)生:知道了。
师:请大家说出单项式的乘法法则。
生:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.师:好。
那么,单项式与多项式的乘法法则呢?生:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
师:多项式与多项式的乘法法则呢?生:(一起回答)多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.师:复习了乘法法则,接着复习单项式的除法法则.生:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.师:说得好!那多项式除以单项式的法则呢?生:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.师:现在,复习乘法公式。
平方差公式用符号如何表示?生:(a+b)(a-b)=a2-b2师:用语言表示呢?生:两个数的和与这两个数的差相乘,等于这两个数的平方差.师:完全平方公式用符号如何表示?生:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2师:用语言表示呢?生:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.师:好。
我们回忆一下添刮号的法则?生:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
15.1强化训练题1、23()()()a b c b c a c a b --⋅+-⋅-+=___________. 2、335210243254)()()()()(a a a a a a a -∙-∙--+∙---=____________。
3、3322)103()102(⨯⨯⨯=____________。
4、若(91+m )2=316,则正整数m=____________。
5、已知105,106αβ==,则2310αβ+=____________。
6、若510=x,310=y,求yx 3210+的值.7、.______________21511=⋅⋅--n n ny x y x8、方程2(25)(2)6x x x x x --+=-的解是___________。
9、已知:单项式M 、N 满足222(3)6x M x x y N +=+,求M 、N 。
10、若2,3nnxy ==,则23()nx y = .11、31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=____________。
12、()()3443a a-⋅-=____________。
13、已知,22322==nm,且则nm +22=____________。
14、2344()()2()()x x x x x x -⋅-+⋅---⋅=___________. 15、(231)20·(73)21=____________。
16、已知x n =5,y n =3,则 (x 2y)2n 的值是___________。
17、若a2n+1·ax =a3 那么x=______________18、若20x y +=,则代数式3342()x xy x y y +++的值为 。
19、若a 2+a +1=2,则(5-a )(6+a )=__________. 20、先阅读材料:“试判断20001999+19992000的末位数字”。