23.3课题学习 图案设计课件1
- 格式:ppt
- 大小:2.94 MB
- 文档页数:37
人教版初中数学(1-28章)目录大全人教版七年级上册数学目录•第一章有理数• 1.1 正数和负数• 1.2 有理数• 1.3 有理数的加减法• 1.4 有理数的乘除法• 1.5 有理数的乘方•第二章整式的加减• 2.1 整式• 2.2 整式的加减•第三章一元一次方程• 3.1 从算式到方程• 3.2 解一元一次方程(一)——合并同类项与移项• 3.3 解一元一次方程(二)——去括号与去分母• 3.4 实际问题与一元一次方程•第四章几何图形初步• 4.1 几何图形• 4.2 直线、射线、线段• 4.3 角• 4.4 课题学习设计制作长方体形状的包装纸盒人教版七年级下冊数学目录•第五章相交线与平行线• 5.1 相交线• 5.2 平行线及其判定• 5.3 平行线的性质• 5.4 平移•第六章实数• 6.1 平方根• 6.2 立方根• 6.3 实数•第七章平面直角坐标系•7.1 平面直角坐标系•7.2 坐标方法的简单应用•第八章二元一次方程组•8.1 二元一次方程组•8.2 消元——解二元一次方程组•8.3 实际问题与二元一次方程组•8.4 三元一次方程组的解法•第九章不等式与不等式组•9.1 不等式•9.2 一元一次不等式•9.3 一元一次不等式组•第十章数据的收集、整理与描述•10.1 统计调查•10.2 直方图•10.3 课题学习从数据谈节水人教版八年级上冊数学目录•第十一章三角形•11.1与三角形有关的线段•11.2 与三角形有关的角•11.3 多边形及其内角和•第十二章全等三角形•12.1 全等三角形•12.2 三角形全等的判定•12.3 角的平分线的性质•第十三章轴对称•13.1 轴对称•13.2 画轴对称图形•13.3 等腰三角形•13.4 课题学习最短路径问题•第十四章整式的乘法与因式分解•14.1 整式的乘法•14.2 乘法公式•14.3 因式分解•第十五章分式•15.1 分式•15.2 分式的运算•15.3 分式方程人教版八年级下册数学目录•第十六章二次根式•16.1 二次根式•16.2 二次根式的乘除•16.3 二次根式的加减•第十七章勾股定理•17.1 勾股定理•17.2 勾股定理的逆定理•第十八章平行四边形•18.1 平行四边形•18.2 特殊的平行四边形•第十九章一次函数•19.1 函数•19.2 一次函数•19.3 课题学习选择方案•第二十章数据的分析•20.1 数据的集中趋势•20.2 数据的波动程度•20.3 课题学习体质健康测试中的数据人教版九年级上册数学目录•第二十一章一元二次方程•21.1 一元二次方程•21.2 解一元二次方程•21.3 实际问题与一元二次方程•第二十二章二次函数•22.1 二次函数的图象和性质•22.2 二次函数与一元二次方程•22.3 实际问题与二次函数•第二十三章旋转•23.1 图形的旋转•23.2 中心对称•23.3 课题学习图案设计•第二十四章圆•24.1 圆的有关性质•24.2 点和圆、直线和圆的位置关系•24.3 正多边形和圆•24.4 弧长和扇形面积•第二十五章概率初步•25.1 随机事件与概率•25.2 用列举法求概率•25.3 用频率估计概率人教版九年级下册数学目录•第二十六章二次函数•26.1 二次函数及其图象•26.2 用函数观点看一元二次方程•26.3 实际问题与二次函数•第二十七章相似•27.1 图形的相似•27.2 相似三角形•27.3 位似•第二十八章锐角三角函数•28.1 锐角三角函数•28.2 解直角三角形•第二十九章投影与视图•29.1 投影•29.2 三视图•29.3 课题学习制作立体模型。
哈尔滨人民教育出版社义务教育教科书五四学制数学八年级下册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第五章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第六章实数6.1 平方根6.2 立方根6.3 实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法第九章不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第十一章三角形11.1 与三角形有关的线段11.2 与三角形有关的角11.3 多边形及其内角和第十二章全等三角形12.1 全等三角形12.2 三角形全等的判定12.3 角的平分线的性质第十三章轴对称13.1 轴对称13.2 画轴对称图形13.3 等腰三角形13.4 课题学习最短路径问题第十四章整式的乘法与因式分解14.1 整式的乘法14.2 乘法公式14.3 因式分解第十五章分式15.1 分式15.2 分式的运算15.3 分式方程第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减第十七章勾股定理17.1 勾股定理17.2 勾股定理的逆定理第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形第十九章一次函数19.1 函数19.2 一次函数19.3 课题学习选择方案第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度20.3 课题学习体质健康测试中的数据第二十一章一元二次方程21.1 一元二次方程21.2 解一元二次方程21.3 实际问题与一元二次方程第二十二章二次函数22.1 二次函数的图象和性质22.2 二次函数与一元二次方程22.3 实际问题与二次函数第二十三章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第二十四章圆24.1 圆的有关性质24.2 点和圆、直线和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率第二十六章二次函数26.1 二次函数及其图象26.2 用函数观点看一元二次方程26.3 实际问题与二次函数第二十七章相似27.1 图形的相似27.2 相似三角形27.3 位似第二十八章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第二十九章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型。
初中数学人教版九年级上学期第二十三章23.3 课题学习图案设计一、单选题(共6题;共12分)1. ( 2分) 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是()A. B. C. D.2. ( 2分) 下列图案中,可以由一个”基本图案”连续旋转45°得到的是()A. B. C. D.3. ( 2分) 如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 44. ( 2分) 如图是日本三菱汽车公司的标志,它可以看做是由一个菱形经过几次旋转,每次旋转多少度得到的()A. 3,60゜B. 2,120゜C. 6,60゜D. 6,120゜5. ( 2分) 如图中的四个图案,四位同学分别说出了它们的形成过程,其中说得不正确的是()A. 图①是一个长方形绕着图形的中心按逆时针旋转90°,180°和270°所得B. 图②可由一个钝角三角形绕着图形的中心按同一方向旋转90°,180°和270°形成C. 图③可以看作以正方形的一条对角线所在直线为对称轴翻折所得D. 图④可以看作由长方形的一边的垂直平分线为对称轴翻折而成6. ( 2分) 一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B. C. D.二、填空题(共6题;共9分)7. ( 1分) 如图,甲图怎样变成乙图:________ .8. ( 1分) 将图(1)中的大正方形绕着其中心顺时针至少旋转________ 度时,可变成图(2).9. ( 1分) 如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________10. ( 1分) 在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是________ .11. ( 2分) 如图所示,其中的图(2)可以看作是由图(1)经过________ 次旋转,每次旋转________ 得到的.12. ( 3分) 如图,可以通过平移变换但不能通过旋转变换得到的图案有________;可以通过旋转变换但不能通过平移变换得到的图案有________;既可通过平移变换,又可通过旋转变换得到的图案有________.三、解答题(共4题;共20分)13. ( 5分) 欣赏图所示的团,并用两种方法分析图案的形成过程.14. ( 5分) 如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.15. ( 5分) 如图所示的图案是由一个梯形经过旋转和对称形成的,则该梯形应该满足什么条件?16. ( 5分) 以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.答案解析部分一、单选题1.【答案】C【考点】作图﹣轴对称,利用平移设计图案,利用旋转设计图案【解析】【解答】A.经过平移可得到上图,错误;B.经过旋转可得到上图,错误;C.经过平移、旋转或轴对称变换后,都不能得到上图,正确;D.经过旋转可得到上图,错误.故答案为:C.【分析】根据平移、旋转或轴对称的定义作出判断即可.2.【答案】B【考点】利用旋转设计图案【解析】【解答】解:A、由基本图形连续旋转90°得到,因此此选项不符合题意;B、由基本图形连续旋转45°得到,因此此选项符合题意;C、由基本图形连续旋转60°得到,因此此选项不符合题意;D、由基本图形连续旋转90°得到,因此此选项不符合题意;故答案为:B【分析】要由一个”基本图案”连续旋转45°得到的,可知整个图案应有8个基本图案组成的,观察四个选项中的图案,即可得出答案。
初中数学目录七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与猜想翻牌游戏中的数学道理1.5 有理数的乘方第二章整式的加减法2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一) ----合并同类项与移项实验与探究无限循环小数3.3 解一元一次方程(二) ----去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形阅读与思考几何学起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒七年级下册第五章相交线与平行线5.1 相交线观察与猜想看图时的错觉5.2 平行线及其判定5.3 平行线的性质信息技术应用探索两条直线的位置关系5.4 平移第六章实数6.1 平方根6.2 立方根6.3 实数阅读与思考为什么根号2不是有理数第七章平面直角坐标系7.1 平面直角坐标系阅读与思考用经纬度表示地理位置7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元----解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法阅读与思考一次方程组的古今表示与解法第九章不等式与不等式组9.1 不等式阅读与思考用求差法比较大小9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查实验与探究瓶子中有多少粒豆子10.2 直方图信息技术应用利用计算机画统计图10.3 课题学习从数据谈节水八年级上册第十一章三角形11.1 与三角形有关的线段11.2 与三角形有关的角11.3 多边形及其内角和第十二章全等三角形12.1 全等三角形12.2 三角形全等的判定12.3 角的平分线的性质第十三章轴对称13.1 轴对称13.2 画轴对称图形13.3 等腰三角形13.4 课题学习最短路径问题第十四章整式的乘法与因式分解14.1 整式的乘法14.2 乘法分式14.3 因式分解第十五章分式15.1 分式15.2 分式的运算15.3 分式方程八年级下册第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减第十七章勾股定理17.1 勾股定理17.2 勾股定理的逆定理第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形第十九章一次函数19.1 函数19.2 一次函数19.3 课题学习选择方案第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度20.3 课题学习体质健康测试中的数据分析九年级上册第二十一章一元二次方程21.1 一元二次方程21.2 解一元二次方程21.3 实际问题与一元二次方程第二十二章二次函数22.1 二次函数的图像和性质22.2 二次函数与一元二次方程22.3 实际问题与二次函数第二十三章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第二十四章圆24.1 圆的有关性质24.2 点和圆、直线和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章概率初步25.1 随机事件和概率25.2 用列举法求概率25.3 用频率估计概率九年级下册第二十六章反比例函数26.1 反比例函数信息技术应用探索反比例函数的性质26.2 实际问题与反比例函数阅读与思考生活中的反比例函数第二十七章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的“三角函数表”28.2 解直角三角形及其应用阅读与思考山坡的高度第二十九章投影与视图29.1 投影29.2 三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第23章旋转23.3课题学习图案设计一、选择题1.如图所示,北京2022年冬奥会会徽是以汉字“冬”为灵感设计的.下列四个选项中,由会徽经过平移而得到的是()2.下列倡导节约的图案中,可以看作是轴对称图形的是()3.利用图形的旋转可以设计出许多美丽的图案.如图2中的图案是由图1所示的基本图案以点O为旋转中心,顺时针(或逆时针)旋转角度α,依次旋转五次而组成,则旋转角α的值不可能是()A.36°B.72°C.144°D.216°4.如图,在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④5.在设计课上,老师要求学生设计一幅既是轴对称又是中心对称的图案,下面是四位同学的设计作品,其中不符合要求的是()6.下列图案中,可以由一个“基本图形”连续旋转45°得到的是()7.如图所示的四个图形中,通过翻折变换、旋转变换和平移变换都能得到的图形是()8.如图,某同学在6×6的网格纸上将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点在格点上,若使平移前后的两个正方形能组成轴对称图形,则平移方向有()A.3个B.4个C.5个D.无数个9.经过平移或旋转不可能将甲图案变成乙图案的是()10.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()11.三角形甲可以通过哪种运动和三角形乙重合()A.平移B.旋转C.平移后再旋转D.翻折12.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画线段()A.1条B.2条C.3条D.4条13.[南京中考]如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C'还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④14.下列关于△ABC的几何变换中,配对正确的是()Ⅰ.轴对称;Ⅱ.中心对称;Ⅲ.旋转;Ⅳ.平移.A.①-Ⅰ,②-Ⅱ,③-Ⅲ,④-ⅣB.①-Ⅱ,②-Ⅰ,③-Ⅲ,④-ⅢC.①-Ⅱ,②-Ⅰ,③-Ⅲ,④-ⅣD.①-Ⅰ,②-Ⅱ,③-Ⅲ,④-Ⅲ15.如图,上边的图案是由下边五种基本图案中的两种拼接而成的,则这两种基本图案为()A.①⑤B.②④C.③⑤D.②⑤16.一个由小平行四边形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小平行四边形的个数可能是()A.3B.4 C.5D.617.(中考·荆州)如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()二、填空题18.我们学过的全等变换方式有________、________、________,生活中常用这三种图形变换进行图案设计.在图形的上述变换过程中,其________和________不变,只是________发生了改变.19.设计图案时,以某一个图案为________,通过平移、________和________的组合进行图案设计.三、解答题20.按要求画图:将图1中的图形沿直线l翻折到图2的方格中;将翻折后的图形绕点P旋转180°到图3的方格中.21.如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图①中画出一个面积最小的▱PAQB;(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.参考答案一、选择题1.C2.B3.A4.A5.B6.B7.B8.C9.C10.A11.D12.D13.D14.B15.D16.C17.A二、填空题18.平移旋转轴对称形状大小位置19.基本图形轴对称旋转三、解答题20.解:翻折后的图形如图1,旋转后的图形如图2.21.解:如图①所示.(答案不唯一)(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.解:如图②所示.(答案不唯一)。
《23.3课题学习图案设计》说课材料一、说教材的地位和作用1、内容:《23.3课题学习图案设计》是义务教育课程标准实验教科书数学九年级上第23章中第三节的内容。
主要内容是:利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.2.本节在教材中的地位与作用:《23.3课题学习图案设计》是在学习了平移、平面直角坐标系,轴对称、图形旋转、中心对称等知识的情况下,初步积累了一定的图形变换数学活动经验的基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动。
它对今后继续学习数学、从事生产和生活有积极的作用,达到培养学生的审美情趣的效果。
二、说教学目标、重点、难点:1、教学目标:(1)知识与技能:通过几何操作题的练习,掌握课题学习中图案设计的方法.(2)数学思考:通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.(3)解决问题:通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.(4)情感态度与价值观:让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.2、说教学重点、难点:我认为本节课的教学重点:是设计图案.我认为本节课的教学难点:是如何利用平移、轴对称、•旋转等图形变换中的一种或它们的组合得出图案.三、教学手段采用多媒体教学,通过直观演示,让学生动手、动脑体验图案设计的全过程。
四、说教学过程的设计:本课共分为五个环节:(一)、回顾旧知识;(二)、观察分析图案;(三)、收集图案;(四)、设计图案;(五)、小结(六)、布置作业。
1.回顾旧知识教师引导回顾平移、轴对称、旋转及其基本特征教师用多媒体演示平移、旋转,轴对称,学生观看学生在观看中回忆平移,旋转,轴对称的作法2.观察分析图案观察图案,思考图案是经过怎样的变换得到的教师出示几种组合图案,学生观察学生从此活动中培养细心的性格,也加深了对三种变换的理解和认识3.收集图案展示学生收集的图案学生展示自己收集的图案,教师引导对学生收集的图案进行分析培养学生为主,教师为辅的学习氛围,学生自主学习,合作交流4.设计图案利用平移,轴对称和旋转进行图案设计学生分组进行图案设计,教师引导学生用较简单的几何图形进行设计,巡视,观察巡视的设计情况,并适时给予指导培养学生合作交流能力和创新精神待学生设计完成后,让其展示成品,并说明图形是怎样变换得到的,让其它组学生给予点评5.小结归纳总结,怎样设计出精美的图案教师引导图案设计的关键是说明,图形变换的作用是说明加强学生的归纳能力,培养自主学习的能力6.布置作业教学活动1学生用花瓣模板画花通过此活动可以巩固学生所学知识必做题面向全体学生,巩固重点,达标训练。
初中数学人教版九年级上册实用资料第二十三章旋转23.1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.23.2中心对称23.2.1中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB ≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习23.2.2中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD 是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.23.2.3关于原点对称的点的坐标理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线l,如图,请画出点A关于l对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连接AO并延长AO;(2)在射线AO上截取OA′=OA;(3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等,∴AD′=A′D″,OA=OA′,∴A′(3,-1),同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为P′(-x,-y).例1如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0).连接A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.三、巩固练习教材第69页练习.四、课堂小结点P(x,y)关于原点的对称点为P′(-x,-y).五、作业布置教材第70页习题3,4.23.3课题学习图案设计利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重点设计图案.难点如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.错误!错误!,第2题图)错误!,第3题图) 2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.例1(学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a);(2)把纸片任意撕成两部分(如图b,如图c);(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);(5)把如图(d)平移到如图(c)的右边,得到如图(e);(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、课堂小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.11。
章节测试题1.【题文】如图所示,△ABC外侧有正方形ABDE与正方形ACFG,请你设计一个方案,将△ABC旋转一个角度,使得△AEG与由△ABC旋转得到的三角形的一边重合,另一边在同一条直线上.【答案】见解答【分析】根据正方形的性质,得出数量关系,再根据旋转的性质设计方案.【解答】由正方形的性质可得:AB=AE,AC=AG,∠BAC=∠BAE=∠EAG=∠GAC,可设计方案为:(1)将△ABC绕点A逆时针方向旋转90°,这时AC与AG重合,AB旋转到AC的原位,与AE在同一直线上;(2)将△ABC绕点A顺时针方向旋转90°,这时AB与AE重合,AC旋转到AB的原位,与AG在同一直线上.2.【答题】如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O经过4次旋转而得到,则每一次旋转的角度大小为______.【答案】72°【分析】本题考查了利用旋转设计图案.【解答】3.【答题】彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是().A. B.C. D.【答案】B【分析】本题考查了旋转的概念.【解答】是轴对称图案,故不符合题意;是旋转图案,符合题意;是其它几何构架图案,故不符合题意;是平移图案,故不符合题意;选B.4.【答题】如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A. 45°,90°B. 90°,45°C. 60°,30°D. 30°,60°【答案】A【分析】本题考查了旋转的性质.【解答】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.选A.5.【答题】风力发电机可以在风力作用下发电.如图的转子叶片图案绕图案中心旋转°后能与原来的图案重合,那么的值可能是()A. 45B. 60C. 90D. 120【答案】D【分析】本题考查了旋转的概念.【解答】该图形被平分成三部分,旋转120°的整数倍,就可以与自身重合,故n 的最小值为120.选D.6.【答题】在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()A. AB. BC. CD. D【答案】B【分析】本题考查了旋转的性质.【解答】A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.选B.7.【答题】下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是()A. AB. BC. CD. D【答案】C【分析】本题考查了旋转的概念.【解答】A只能通过旋转180°得到;B只能通过平移得到;D只能通过旋转得到;C能用平移,又能用旋转得到,选C.8.【答题】如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A. AB. BC. CD. D【答案】B【分析】本题考查了图形的旋转变化,认真观察旋转得到的图案,找到旋转中心,即可判断.【解答】A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.选B.9.【答题】如下四个图案,它们绕中心旋转一定的度数后都能和原来的图形相互重合,其中有一个图案与其余图案旋转的度数不同的是()A. B. C. D.【答案】B【分析】本题考查了旋转角,解题的关键是根据图形特点,正确计算出各个图形的最小旋转度数.【解答】A、360÷6=60°;B、360°÷3=120°;C、360°÷6=60°;D、360°÷6=60°.B的旋转角度与其它三个不同,选B.10.【答题】下列图形均可由“基本图案”通过变换得到:(只填序号)(1)可以平移但不能旋转的是______;(2)可以旋转但不能平移的是______;(3)既可以平移,也可以旋转的是______.【答案】①④②⑤③【分析】本题考查了利用移、旋转、轴对称变换设计图案.【解答】①可以看作由左边图案向右平移得到的;②可以看作一个菱形绕一个顶点旋转得到的;③既可以看作一个圆向右平移得到的,也可以看作两个圆组成的图案旋转得到的;④可以看作上面基本图案向下平移得到的;⑤可以看作上面图案绕中心旋转得到的.故可以平移但不能旋转的是①④;可以旋转但不能平移的是②⑤;既可以平移,也可以旋转的是③.故答案为(1)①④,(2)②⑤,(3)③11.【答题】如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?______.【答案】把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD【分析】本题考查了利用旋转设计图案.【解答】观察图形可知把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.故答案为:把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.12.【答题】正六边形可以看成由基本图形______经过______次旋转而成.【答案】正三角形 5【分析】本题考查了旋转的性质.【解答】根据图形可得:正六边形可以看成由基本图形正三角形经过5次旋转而成.13.【答题】如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转______次,每次旋转______度形成的.【答案】7 45【分析】本题考查了利用旋转设计图案.【解答】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.故如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.14.【答题】如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是______.【答案】45°【分析】本题考查了旋转的性质.【解答】∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°,故答案为:45°.15.【题文】如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?【答案】见解答【分析】可选择不同的基本图形,一般选择基本图形是能使图形的形成过程好说明为原则.【解答】此图形可看作基本图形经过轴对称形成的.16.【题文】如图,网格中每个小正方形的边长为1,点C(0,1),点B(-1,3).(1)利用网格画出直角坐标系(要求标出x轴,y轴和原点),则点A的坐标为______;(2)以△ABC为基本图形,利用旋转设计一个图案,说明你的创意为______.【答案】A(-4,3)见解答.【分析】(1)根据点C的坐标确定原点,则可以画出直角坐标系,把点B向左平移3个单位长度得到点A;(2)把△ABC绕点C顺时针旋转3次,即可得到一个风车的图案.【解答】(1)直角坐标系如图所示,则A的坐标为(-4,3);(2)如图,把△ABC绕点C顺时针旋转3次90°,180°,270°,即可得到一个风车的图案.17.【题文】如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O按顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.【答案】(1)画图见解答;(2)34;(3)AB2+BC2=AC2【分析】(1)将此图案的各顶点绕点O顺时针方向旋转90°,180°,270°后找到它们的对应点,顺次连接得到的图案,就是所要求画的图案.(2)观察画出的图形,可发现S四边形AA1A2A3=S四边形AB1B2B3-4S△BAA3依次代入求值.(3)这个图案就是我们几何中的著名的勾股定理.【解答】(1)如图.(2)-4=(3+5)2-4××3×5=34,故四边形AA1A2A3的面积是34.(3)由图可知:(a+c)2=4×ac+b2,整理得:c2+a2=b2,即:AB2+BC2=AC2.这就是著名的勾股定理.18.【题文】如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)【答案】作图见解答.【分析】如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D 点下面两格的小正方形放在右面,就组成了矩形.【解答】如图:19.【题文】如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.【答案】图案见解答.【分析】先以等边三角形的一边为基础画一个基本图形,再绕等边三角形的两个顶点分别旋转60°后删除原等边三角形即可.【解答】如图所示:20.【题文】某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程.(2)请你利用所学过的知识再设计一幅与上述不同的图案.【答案】(1)见解答(2)见解答【分析】(1)答案不唯一,如:我喜欢图案(4).图案形成的过程也不唯一,如:图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)答案不唯一,利用旋转或对称的相关知识完成即可.图形见解答.【解答】(1)答案不唯一,如:我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示.。