焦磷酸测序地原理及引物设计
- 格式:doc
- 大小:107.50 KB
- 文档页数:2
焦磷酸光化测序技术的基本原理及运用-人类学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:人类基因组计划(Human Genome Project, HGP)不仅极大地提高了人类对基因组和相关遗传信息的认识水平,而且促进了生命科学研究技术的发展和应用。
正是在这样的历史背景下,焦磷酸光化测序技术(pyrosequencing)由瑞典研究人员发明。
焦磷酸光化测序技术的基础原理是基于通过合成测序原理进行酶促反应的DNA测序方法,通过基于释放焦磷酸盐时的链式反应的可见光检测,即可获得一个特异的检测峰,峰值的高低和相匹配的碱基数成正比。
该技术可应用于DNA核苷酸序列和突变的检测、单核苷酸多态性的基因型的鉴定,以及DNA甲基化水平变化的分析等。
近年来,随着摄影器材和成像技术的快速发展,这项技术的原理是基于通过酶促反应而实时检测可见光,因此,有望在检测的敏感性方面得到更进一步的发展。
该文根据笔者在瑞典近三十年的工作经验和积累的文献,首先阐明焦磷酸光化测序的基本原理,然后介绍该技术的应用,最后讨论其发展前景。
关键词:人类基因组计划; 焦磷酸光化测序; 基因变异; 基因型; DNA甲基化;Abstract:The Human Genome Project(HGP)not only greatly improved the understanding of human genome and related genetic information, but also promoted the development of technologies in life science research. It was under this historical context that pyrosequencing was invented by Swedish researchers. Pyrosequencing is a method of DNA sequencing based on the sequencing by synthesis principle with enzymatic reactions, and relies on light detection based upon a chain reaction when pyrophosphate is released. The application of this technology involved the detection of DNA nucleotide sequences and mutations, the identification of genotypes of single nucleotide polymorphisms, the analysis of changes in DNA methylation levels etc. With the recent rapid development of photographic equipment and imaging technology, this technology is expected to have an increasing sensitivity in signal detection. Based upon the working experiences in Sweden for nearly 30 years and accumulated literature, this review first clarified the basic principles of pyrosequencing, then introduced the applications of this technology, and finally discussed its development prospects in the near future.Keyword:Human Genome Project; pyrosequencing; genetic variation; genotype; DNA methylation;1 、引言本世纪是生命科学的世纪。
原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。
如此每管反应体系中便合成以各自的双脱氧碱基为3’端的一系列长度不等的核酸片段。
反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。
经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。
Sanger法因操作简便,得到广泛的应用。
后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。
荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。
20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。
1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。
1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。
目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。
如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。
焦磷酸测序名词解释焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。
焦磷酸测序的原理是通过对 DNA 序列进行扩增,并对扩增产物进行测序,最终得到 DNA 序列信息。
焦磷酸测序主要应用于基因组学、遗传学、转录组学等领域,可以用于基因表达谱分析、基因突变检测、基因调控机制研究等。
相比其他基因测序技术,焦磷酸测序具有很多优势,如测序成本低、速度快、精度高等。
但是,焦磷酸测序也存在一些缺陷,如测序长度有限、难以测序复杂基因结构等。
尽管焦磷酸测序技术已经发展了多年,但它仍在不断演进和改进。
未来,焦磷酸测序技术将继续发展,并在更多领域得到应用。
1. 什么是焦磷酸测序焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。
焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。
具体来说,焦磷酸测序技术利用了聚苯乙烯四氢呋喃(ATP)合成酶的特性,可以通过检测 ATP 合成过程中的光谱变化来确定 DNA 序列。
焦磷酸测序技术最初由来自瑞典斯德哥尔摩大学的科学家们开发,并于 1998 年由瑞典Pyrosequencing AB 公司商业化。
自此,焦磷酸测序技术就成为了一种广泛应用于基因组学、遗传学、转录组学等领域的技术手段。
2. 焦磷酸测序的原理焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA序列。
焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。
焦磷酸测序的工作流程如下:1. 先将 DNA 样本进行扩增,得到扩增产物。
2. 然后将扩增产物与一种叫做反转录酶的蛋白质混合,使其能够将 DNA 序列转录成RNA 序列。
3. 将转录后的 RNA 序列与一种叫做聚苯乙烯四氢呋喃(ATP)合成酶的蛋白质混合,使其能够将 RNA 序列通过合成 ATP 来反应出 DNA 序列信息。
焦磷酸测序:DNA序列分析技术是现代生命科学研究的核心技术之一,而双脱氧核苷酸链终止法(Sanger法)是目前使用最普遍的DNA序列分析技术。
在基于Sanger法的全自动DNA测序技术中,测序反应产生的DNA片段是荧光标记的,这些片段经过平板胶电泳或毛细管电泳得到分离,荧光分子被激发而发光,发出的光信号被检测系统检测。
Sanger法的优势在于可以分析未知DNA的序列,且单向反应的读序能力较长,目前的技术可以达到1000bp以上。
在实际工作中,很多情况需要对已知序列的DNA片段进行序列验证,而这种分析往往测几十bp就可以满足需要.在这种情况下,Sanger法未必是最合适的DNA序列分析技术。
新发展的Pyrosequencing(焦磷酸测序)技术应该是目前最适合这些应用的DNA序列分析技术。
Pyrosequencing技术是新一代DNA序列分析技术,该技术对DNA的序列分析无须进行电泳,DNA片段无须荧光标记,因此相应的仪器系统无须荧光分子的激发和检测装置.本文将就Pyrosequencing技术的原理和应用进行介绍和讨论.一、Pyrosequencing技术的原理首先通过PCR制备待测序的DNA模板,PCR的引物之一是用生物素标记的。
PCR产物和偶连avidin的Sepharose微珠孵育,DNA双链经碱变性分开;纯化得到含生物素标记引物的待测序单链,并和测序引物结合成杂交体。
Pyrosequencing技术是由四种酶催化的同一反应体系中的酶级连反应,四种酶是:DNA聚合酶(DNA polymerase)、硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase)和双磷酸酶(apyrase).反应底物为adenosine 5′ phosphosulfate (APS)、荧光素(luciferin)。
反应体系还包括待测序DNA单链和测序引物。
反应体系配置好后就可以加入底物dNTP进行序列分析了。
焦磷酸测序(Pyrosequencing)实验技术及方法先进的基于焦磷酸测序(Pyrosequencing)的PSQ96 MA技术平台,能提供基于序列测定的SNP检测、等位基因频率分析和甲基化检测服务。
另外,还提供短片段的测序服务(50-100 bp),适用于细菌和病毒分型等研究领域。
基于Pyrosequencing的SNP分析具有快速、高通量的特点,完成96个样品的SNP分析仅需10分钟。
整个实验过程(包括PCR扩增、单链分离、P yrosequencing测序和数据分析)也只需3-4 小时。
PSQ96 MA配备有功能强大的SNP分析软件,可支持SNP位点的复合检测(在一个反应体系中最多可同时检测3个不同位置的SNP位点)。
对于混合样品,则可准确测定特定SNP位点的基因型频率。
一.常规SNP检测样品要求用户须提供足够量的基因组DNA样品,一般需200ng/样品/位点。
二.基于Pyrosequencing技术的甲基化检测服务1.甲基化研究意义DNA甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。
DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。
,真核生物中甲基化的主要形式是在DNA甲基化转移酶(DNMTs)的作用下,使CpG二核苷酸5'端的胞嘧啶转变为5'-甲基胞嘧啶。
这种DNA修饰方式并没有改变基因序列,但是它参入了基因的表达调控。
DNA甲基化在维持正常细胞功能、遗传印记、胚胎发育以及肿瘤发生过程中起着极其重要的作用。
2.基本流程:通过亚硫酸氢盐处理基因组DNA,使其中未甲基化的C转变成T后,运用特异性引物扩增目的区段,然后用Pyrosequencing技术测定目标位点中 C/T的比率,以此判断目标位点的甲基化程度。
罗氏454测序系统中文名罗氏454测序系统测试原理基于焦磷酸测序法特点依靠生物发光对DNA序列进行检测测序流程支持各种不同来源的样品序列测定测试原理GS FLX系统的测序原理是基于焦磷酸测序法,依靠生物发光对DNA序列进行检测。
在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,GSFLX系统将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来。
通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。
此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、高灵敏度和高自动化的特点。
测序流程1. 样品种类:GS FLX系统支持各种不同来源的样品序列测定,包括基因组DNA,PCR产物,BACs,cDNA及小分子RNA等,不同类型的样品测序都可在一台仪器上完成。
2. 样品DNA打断:样品如基因组DNA或BAC等被打断成300到800bp的片段;对于小分子的非编码RNA,这一步骤并不需要。
短的PCR产物则可利用GS融合引物扩增后直接进行步骤4。
3. 加接头:借助一系列标准的分子生物学技术,将3′端和5′端有特异性的A和B接头连接到DNA片段上。
接头也将在后继的纯化,扩增和测序步骤中用到。
图中仅仅显示了后续步骤中要用到的单链的DNA片段。
4. 一条DNA片段=一个磁珠:接头使成百上千条DNA片段分别结合到一个磁珠上,磁珠被单个油水混合小滴包被后,在这个小滴里进行独立的扩增,而没有其他的竞争性或者污染性序列的影响,从而实现了所有DNA片段进行平行扩增(emPCR)。
5. 一个磁珠=一条读长:经过emPCR扩增后,每个磁珠上的DNA片段拥有了成千上万个相同的拷贝。
经过富集以后,这些片段仍然和磁珠结合在一起,随后就可以放入到Pico Titer Plate板中供后继测序使用了。
6. 数据读取和分析工具:GS FLX系统提供三种不同的生物信息学工具对测序数据进行分析,适用于不同的应用。
Pyrosequencing RCR
1.实验原理:焦磷酸测序采用生物素标记的引物进行PCR扩增,将PCR产物纯
化并变性为单链后,向其中加入四种酶的混合物:DNA聚合酶(合成DNA双链,释放dNTP的焦磷酸基团,释放出来的焦磷酸基团的量与和模板结合的dNTP的量成正比)、ATP硫酸化酶(在adenosine 5´ phosphosulfate存在的情况下催化焦磷酸基团形成ATP)、荧光素酶(在ATP介导下使荧光素转化为氧化荧光素,氧化荧光素能释放与ATP量成正比的可见光信号)及三磷酸腺苷双磷酸酶(降解未参入新链的dNTP及ATP,猝灭荧光)。
在测序过程中,每次加入一种类型的dNTP,若该dNTP能与模板链互补配对,则在四种酶的作用下发生一系列的反应,最终将荧光信号转换成电信号体现出来,显示为一个个高度不一的峰,峰的高度与碱基的个数成正比。
反之,当dNTP不能与模板链结合时,将直接被三磷酸腺苷双磷酸酶降解,相应的将不会显示峰值。
如下图所示:
2.引物设计
焦磷酸测序的模板也是经亚硫酸盐修饰后扩增,故其引物设计原则与BSP引物设计基本一致:1)引物长度在18~24碱基;
2)避免引物间互补或自身形成发卡结构
3)引物中G/C – A/T的分配比例相当,使Tm在62-65°C之间其主要区别在于:1)Pyrosequencing的一条引物的5' 端需使用生物素标记,以和磁珠或琼脂糖beads结合,另一条引物不要
标记
2)由于游离的生物素将会和生物素标记的PCR产物竞争
结合联霉亲和素(beads)而降低信号水平,须使用HPLC
纯化生物素标记的引物。
3)要确保PCR产物目标量大,且没有非特异性条带,也
没有引物二聚体。
PCR完成后使用电泳鉴定PCR产物。
4)PCR循环数须足够,以保证完全消耗掉引物。
Pyrosequencing 的引物设计可以直接使用PyroMark Assay Design 2.0软件进行设计。
使用该软件时,只需将目的基因序列输入,该软件便可自动设计反应需要的引物,并会将CpG位点一一罗列出来,与常用的引物设计软件一样,也会有一个评分,建议使用评分在九十分以上的引物,当最高得分仍较低时,可考虑将BSR引物的其中一条进行生物素标记后使用。
PS:PyroMark Assay Design 2.0软件对目的基因的片段长度有限制,建议PCR的目的片段控制在300bp以内,测序片段控制在100bp,这样得到的结果会更加准确可靠。