高层混凝土结构重力二阶效应的影响分析
- 格式:pdf
- 大小:181.39 KB
- 文档页数:6
重力二阶效应在高层建筑中的应用摘要: 随着我国经济的高速发展,城市建筑物的高度、层数在不断增加,高层建筑的安全性、稳定性越来越得到人们的重视,而随着建筑物高度的增加,重力二阶效应对结构稳定性的影响也越来越大。
本文从重力二阶效应的概念、分析方法以及如何考虑重力二阶效应三个方面进行了简要讨论,以供大家参考借鉴。
关键词: 重力二阶效应;分析方法;高层建筑0前言高层建筑在水平荷载作用下,主要是依靠竖向构件如框架柱、剪力墙提供抗侧刚度和强度来维持结构的整体稳定。
随着我国高层建筑的快速发展,国内高层建筑越来越趋向不规则的外形,以满足大众审美要求,这种高层建筑的结构体型复杂、层数多、抗侧刚度也相对较小,在风荷载、水平地震作用以及结构自重的作用下,重力二阶效应的影响越发明显,结构工程师们需要引起高度重视。
1 重力二阶效应的概念重力二阶效应是在水平地震作用和风荷载作用下,由于结构或构件在受力后产生的变形而引起的附加作用效应,我们通常所说的重力二阶效应,包括以下两部分: 1、由轴压力在构件自身挠曲后而引起的局部二阶效应,称为 P -δ 效应,其影响相对较小; 2、结构在风荷载或水平地震作用下产生结构侧移后,在结构自重的作用下又产生“结构二阶侧移”,即重力 P-Δ 效应。
一般来说,由结构P -Δ 效应引起的二阶效应是最主要的,而P -δ 效应影响很小,一般可以忽略不计,但对于临界应力低、稳定性差的细柔受压杆件P -δ 效应对其的影响也不能忽视。
2 几种常用的重力二阶效应分析方法2.1增大系数法这是一种重力二阶效应的常用分析方法。
它的思路就是先不考虑重力二阶效应的分析结果算出结构内力或者位移,然后直接乘以相应增大系数,以此来近似考虑重力二阶效应的影响。
目前我国《高层建筑混凝土结构技术规程》(JGJ3一2002)和《建筑抗震设计规范》(GB50011一2001)就是采用的这种方法,在《建筑抗震设计规范》(GB50011一2001)第3 ? 6 ? 3条条文说明中给出了增大系数计算公式:对于一般情况下的多层建筑,重力二阶效应的影响特别小,一般不用考虑4.结语重力二阶效应是一个复杂而又重要的结构效应,它存在于许多高层建筑和一些荷载较大的结构当中,它是保证结构稳定不被破坏的重要因素,如果随意忽略会导致非常严重的后果,这就需要我们引起高度重视,合理考虑。
二阶效应一、定义:二阶效应由两部分组成:p-δ效应和P-Δ效应。
1.P-δ效应是指由于构件在轴向压力作用下,自身发生挠曲引起的附加效应,可称之为构件挠曲二阶效应,通常指轴向压力在产生了挠曲变形的构件中引起的附加弯矩,附加弯矩与构件的挠曲形态有关,一般中间大,两端部小。
2.P-Δ效应是指由于结构的水平变形而引起的重力附加效应,可称之为重力二阶效应,结构在水平力(风荷载或水平地震力)作用下发生水平变形后,重力荷载因该水平变形而引起附加效应,结构发生的水平侧移绝对值越大,P-Δ效应越显著,若结构的水平变形过大,可能因重力二阶效应而导致结构失稳。
控制P-Δ效应的方法:(1)结构抗侧刚度不能太小:a.弹性层间位移角限值;《抗规》5.5.1条及3.6.3条文说明b.钢结构柱长细比的规定。
《抗规》8.3.1条(2)刚重比上下限值;《高规》5.4.1条二、规范相关条文:《抗规》8.2.3条(钢结构)《抗规》H.2.8(多层钢结构厂房)《抗规》3.10.4(建筑抗震性能化设计)混凝土规范《混规》3.2.8 (内力分析)《混规》6.2.3(偏压构件)《混规》6.2.4(偏压构件)《混规》附录B(增大系数法)高层混凝土规程《高规》5.4节(重力二阶效应)钢结构设计规范《钢规》3.2.8条三、规范对其实现方法一、混凝土规范:(一)、框架结构、剪力墙结构、框架-剪力墙结构、筒体结构1 P-δ(挠曲)效应调整《砼规》6.2.3条:不考虑P-δ二阶效应的情况弯矩作用平面内截面对称的偏心受压构件,当同时满足下列三式时,可不考虑轴向压力在该方向挠曲杆件中产生的附加弯矩影响。
同一主轴方向杆端弯矩比:设计轴压比:构件的长细比:其中:M1--绝对值较大端弯矩设计值;M2--绝对值较小端弯矩设计值;当构件按单曲率弯曲时,M1/M2取正值,否则取负值;《砼规》6.2.4条:(增大系数法)除排架结构柱外,其他偏心受压构件考虑轴向压力在挠曲杆件中产生的二阶效应后控制截面弯矩设计值应按下列公式计算:增大后弯矩:。
重力二阶效应和结构整体稳定性的一般规定相关标签:∙一般规定∙重力二阶效应∙结构整体稳定性(1)所谓重力二阶效应,一般包括两部分:一是由于构件自身挠曲引起的附加重力效应.即P-δ效应,二阶内力与构件挠曲形态有关,一般中段大、端部为零;二是结构在水平风荷载或水平地震作用下产生侧移变位后,重力荷载由于该侧移而引起的附加效应.即重力P-Δ效应。
分析表明,对一般高层建筑结构而言,由于构件的长细比不大,其挠曲二阶效应的影响相对很小,一般可以忽略不计;由于结构侧移和重力荷载引起的P-Δ被应相对较为明显,可使结构的位移和内力增加,当位移较太时甚至导致结构失稳。
因此,高层建筑混凝土结构的稳定设计,主要是控制、验算结构在风或地震作用下,重力荷载产生的P-Δ效应对结构性能降低的影响以及由此可能引起的结构失稳。
高层建筑结构只要有水平侧移,就会引起重力荷载作用下的侧移二阶效应(P-Δ效应),其大小与结构侧移和重力荷载自身大小直接相关,而结构侧移叉与结构侧向刚度和水平作用大小密切相关。
控制结构有足够的侧向刚度,宏观上有两个容易判断的指标:一是结构侧移应满足规程的位移限制条件,二是结构的楼层剪力与该层及其以上各层重力荷载代表值的比值(即楼层剪重比)应满足最小值规定。
一般情况下,满足了这些规定,可基本保证结构的整体稳定性,且重力二阶效应的影响较小。
对抗震设计的结构,楼层剪重比必须满足《高规》第3.3.13条的规定;对于非抗震设计的结构,虽然荷载规范规定基本风压的取值不得小于0.3kN/`m^2`.可保证水平风荷载产生的楼层剪力不至于过小,但对楼层剪重比没有最小值规定。
因此,对非抗震设计的高层建筑结构,当水平荷载较小时,虽然侧移满足楼层位移限制条件,但侧向刚度可能依然偏小,可能不满足结构整体稳定要水或重力二阶效应不能忽略。
(2)《建筑抗震设计规范》(CB 50011-2001)第三章第3.6.3条规定:“当结构在地震作用下的重力附加弯矩大于初始弯矩的10%时,应计人重力二阶效应的影响。
混凝土结构重力二阶效应荷载分项系数随着城市化进程的加快,高层建筑的需求越来越大,而混凝土结构作为一种常见的建筑结构形式,在高层建筑中得到了广泛应用。
然而,对于混凝土结构在设计和施工过程中所面临的问题,特别是重力二阶效应的荷载分项系数,一直是结构设计和工程实践中的热点和难点问题。
深入研究和分析混凝土结构重力二阶效应荷载分项系数的影响因素和计算方法,对于保证结构的安全性和可靠性具有重要意义。
1. 重力二阶效应概述重力二阶效应是指在垂直方向上,由于结构自重引起的非线性效应。
在混凝土结构中,由于结构的柔度和刚度存在一定的不一致性,使得结构在承载载荷时会产生较大的变形,在某些情况下会引起结构的不稳定和破坏。
重力二阶效应的考虑对于混凝土结构的设计和施工具有重要意义。
2. 影响因素重力二阶效应的大小受多种因素的影响,主要包括结构的几何形状、材料的性质、荷载的种类和分布等。
其中,结构的刚度和柔度是影响重力二阶效应的关键因素,而结构的几何形状和材料的性质则直接影响了结构的整体稳定性和承载能力。
荷载的种类和作用方式也会对重力二阶效应产生一定的影响。
3. 荷载分项系数为了准确地考虑重力二阶效应对结构的影响,相关标准和规范中引入了荷载分项系数的概念。
荷载分项系数是指在进行结构设计时,将荷载按照不同的分项作用计算,并将计算结果乘以相应的系数得到最终的设计荷载值。
在混凝土结构中,荷载分项系数的合理确定对于保证结构的安全和可靠性具有重要意义。
4. 系数计算方法确定荷载分项系数的方法通常包括经验法和理论分析法两种。
在实际工程中,可以根据结构的具体情况和设计要求选择合适的系数计算方法。
通常情况下,采用经验法进行系数的确定,结合理论分析进行修正和调整,可以得到较为合理和准确的系数值。
5. 相关规范和标准国内外关于混凝土结构重力二阶效应荷载分项系数的相关规范和标准是指导和保证工程实践的重要依据。
在进行混凝土结构设计和施工时,必须严格遵守相关规范和标准的规定,确保结构的安全性和可靠性。
一、混凝土结构的二阶效应混凝土结构的二阶效应应由两部分组成:p-δ效应和P-Δ效应。
p-δ效应是指由于构件在轴向压力作用下,自身发生挠曲引起的附加效应,可称之为构件挠曲二阶效应,通常指轴向压力在产生了挠曲变形的构件中引起的附加弯矩,附加弯矩与构件的挠曲形态有关,一般中间大,两端部小。
P-Δ效应是指由于结构的水平变形而引起的重力附加效应,可称之为重力二阶效应,结构在水平力(风荷载或水平地震力)作用下发生水平变形后,重力荷载因该水平变形而引起附加效应,结构发生的水平侧移绝对值越大,P-Δ效应越显著,若结构的水平变形过大,可能因重力二阶效应而导致结构失稳。
1.重力二阶效应(P-Δ效应)计算计算P-Δ效应的近似方法有等效几何刚度的有限元法、等效水平力的有限元迭代法、折减弹性抗弯刚度的有限元、结构位移和构件内力增大系数法等。
1)等效几何刚度的有限元法在不考虑P-Δ效应影响时,是在结构的初始拓扑关系基础上建立结构的平衡方程。
一般可记为:[K]{u}=[F]考虑P-Δ效应影响时,对于结构的任一节点j,因P-Δ效应而引起的Mj=Gjuj,相应的等效附加水平力为Vj= 。
对于所有节点,则形成一个等效附加水平分力向量。
可以看出,考虑P-Δ效应相当于结构的初始刚度矩阵[K]修改为等效刚度矩阵[K-KG]。
新规范版的SATWE、TAT、PMSAP等软件都采用了等效几何刚度的有限元法,这种方法具有一般性,它既适用于采用刚性楼板假定的结构,也适用于存在独立弹性节点的结构。
与不考虑P-Δ效应的分析结果相比,结构的周期、位移和构件的内力都有所不同。
2)折减弹性抗弯刚度的有限元法折减弹性抗弯刚度的有限元法是今年来美国、加拿大等国设计规范推荐的一种考虑效益方法。
这种分析方法的基本思路是采用折减等效刚度,近似的考虑钢筋混凝土结构中各类构件在极限状态时因开裂而导致刚度减小现象,使分析结果与设计状态尽可能一致。
《混凝土结构设计规范》引进该方法,第7.3.12规定,当采用考虑二阶效应的弹性分析方法时,宜在结构分析中对钢筋混凝土构件的弹性抗弯刚度乘以一下折减系数:梁取0.4,柱取0.6,对未开裂的剪力墙和核心筒取0.7,对已开裂的剪力墙和核心筒壁取0.45。
关于“二阶效应”的总结【《砼规》,《抗规》,《高规》】“二阶效应”分为“重力二阶效应P-Δ”和“挠曲二阶效应P-δ”重力二阶效应P-Δ:在地震等水平力作用下结构侧移时重力作用产生的附加内力挠曲二阶效应P-δ:偏心受压构件(主要是长细比大于17.5柱)由于自身挠曲产生的附加内力★《砼规》中的规定:《砼规》7.3.9条给出两种考虑“二阶效应”的方法:1)《砼规》7.3.10条的偏心距增大系数法存在问题:此法只针对于混凝土偏心受压构件(主要是柱),而且不论是否时地震工况,对于长细比大于17.5的偏心受压构件均应考虑。
虽然条文说明中认为此法可以同时考虑上述两种二阶效应,但从其增大系数的计算公式可知,此增大系数对挠曲二阶效应反映得较为充分,对重力二阶效应反映的则不够充分,或者不够准确,因为偏心距增大系数计算公式与结构的侧移量大小没有关系。
2)《砼规》7.3.12条的折减构件弹性抗弯刚度法(仿照美国规范)存在问题:《砼规》认为此法是“一种精度和效率较高得”考虑二阶效应的方法,是“一种理论上严密的”方法。
但是刚度得折减系数得取值很难精确,在不同荷载组合下,不同得构件得开裂程度都不一样。
取统一折减系数得方法,只能大概反映二阶效应的影响。
而且在程序实现时也会有新得问题,比如刚度减小,导致地震力减小,位移算是弹性还是塑性位移等等。
★《抗规》中的规定:《抗规》3.6.3条及条文说明规定,结构在地震作用下的重力附加弯矩大于初始弯矩的10%时,应考虑重力二阶效应的影响。
考虑方法是简化的内力增大系数1/(1-θ),θ是稳定系数,即附加弯矩占初始弯矩的倍数。
同时规定,对于混凝土柱,本条与《砼规》7.3.10不同时考虑。
★《高规》中的规定:《高规》5.4.1~5.4.3条规定,在水平力作用下,不满足5.4.1条刚重比的高层建筑,需要考虑水平力作用下重力二阶效应对结构内力和位移的影响。
其计算方法是5.4.3条的内力和位移增大系数。