高一数学必修一 2-2-1-2对数的运算性质
- 格式:doc
- 大小:63.50 KB
- 文档页数:5
2.2.1.2
一、选择题
1.下列式子中正确的个数是( ) ①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32 ③log a (bc )=(log a b )·(log a c ) ④log a x 2=2log a x
A .0
B .1
C .2
D .3 [答案] A
2.如果lg x =lg a +2lg b -3lg c ,则x 等于( ) A .a +2b -3c B .a +b 2-c 3 C.ab 2
c 3
D.2ab
3c
[答案] C
[解析] lg x =lg a +2lg b -3lg c =lg ab 2
c 3,
∴x =ab 2
c
3,故选C.
3.(2010·四川理,3)2log 510+log 50.25=( ) A .0 B .1 C .2
D .4
[答案] C
[解析] 2log 510+log 50.25=log 5100+log 50.25=log 525=2. 4.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2
B .5a -2
C .3a -(1+a )2
D .3a -a 2-1
[答案] A
[解析] 由log 38-2log 36=3log 32-2(log 32+log 33)=3a -2(a +1)=a -2. 5. 的值等于( )
A .2+ 5
B .2 5
C .2+
52
D .1+
52
[答案] B
[解析] 据对数恒等式及指数幂的运算法则有:
6.与函数y =10lg(x -1)
的图象相同的函数是( ) A .y =x -1 B .y =|x -1| C .y =x 2-1
x +1
D .y =(
x -1x -1
)2 [答案] D
[解析] y =10lg(x -1)=x -1(x >1),故选D. 7.已知f (log 2x )=x ,则f (1
2)=( )
A.1
4
B.1
2 C.
2
2
D. 2
[答案] D
[解析] 令log 2x =12,∴x =2,∴f (1
2
)= 2.
8.如果方程lg 2x +(lg2+lg3)lg x +lg2·lg3=0的两根为x 1、x 2,那么x 1·x 2的值为( ) A .lg2·lg3 B .lg2+lg3 C .-6
D.16
[答案] D
[解析] 由题意知lg x 1和lg x 2是一元二次方程u 2+(lg2+lg3)u +lg2·lg3=0的两根 ∴lg x 1+lg x 2=-(lg2+lg3), 即lg(x 1x 2)=lg 16,∴x 1x 2=1
6.
9.(09·湖南文)log 22的值为( ) A .- 2 B. 2 C .-1
2
D.12
[答案] D
[解析] log 22=log 221
2=1
2.
10.(09·江西理)函数y =ln(x +1)
-x 2-3x +4的定义域为( )
A .(-4,-1)
B .(-4,1)
C .(-1,1)
D .(-1,1]
[答案] C
[解析] 要使函数有意义,则需⎩⎪⎨⎪⎧
x +1>0
-x 2
-3x +4>0,
即⎩⎪⎨⎪⎧
x >-1
-4<x <1
,解得-1<x <1,故选C. 二、填空题
11.log 6[log 4(log 381)]=________. [答案] 0
[解析] log 6[log 4(log 381)]=log 6(log 44)=log 61=0.
12.使对数式log (x -1)(3-x )有意义的x 的取值范围是________. [答案] 1<x <3且x ≠2
[解析] y =log (x -1)(3-x )有意义应满足 ⎩⎪⎨⎪⎧
3-x >0x -1>0x -1≠1
,解得1<x <3且x ≠2.
13.已知lg3=0.4771,lg x =-3.5229,则x =________. [答案] 0.0003
[解析] ∵lg x =-3.5229=-4+0.4771 =-4+lg3=lg0.0003,∴x =0.0003.
14.已知5lg x =25,则x =________,已知log x 8=3
2,则x =________.
[答案] 100;4
[解析] ∵5lg x =25=52,∴lg x =2,∴x =102=100,
∵log x 8=3
2
,∴x 32=8,∴x =82
3=4.
15.计算:
(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;
(3)lg 23-lg9+1=________; (4)1
3log 168+2log 163=________; (5)log 6112-2log 63+1
3log 627=________.
[答案] 2,1,lg 10
3
,-1,-2
[解析] (1)2log 210+log 20.04=log 2(100×0.04)=log 24=2 (2)lg3+2lg2-1lg1.2=lg(3×4÷10)lg1.2=lg1.2lg1.2=1
(3)
lg 23-lg9+1=
lg 23-2lg3+1=
(1-lg3)2
=1-lg3=lg 103
(4)1
3log 168+2log 163=log 162+log 163=log 166=-1 (5)log 6112-2log 63+13log 627=log 61
12-log 69+log 63
=log 6(112×19×3)=log 61
36=-2.
三、解答题lg
16.求满足log x y =1的y 与x 的函数关系式,并画出其图象,指出是什么曲线. [解析] 由log x y =1得y =x (x >0,且x ≠1) 画图:一条射线y =x (x >0)除去点(1,1).
17.已知lg(x +2y )+lg(x -y )=lg2+lg x +lg y ,求x
y
的值.
[解析] 由已知条件得⎩⎪⎨⎪
⎧
x +2y >0
x -y >0x >0
y >0(x +2y )(x -y )=2xy
即⎩⎨
⎧
x >y
y >0
(x +2y )(x -y )=2xy
,整理得⎩⎨
⎧
x >y
y >0
(x -2y )(x +y )=0
∴x -2y =0,因此x
y
=2.
18.已知函数y =y 1+y 2,其中y 1与log 3x 成正比例,y 2与log 3x 成反比例.且当x =1
9时,
y 1=2;当x =1
27
时,y 2=-3,试确定函数y 的具体表达式.
[解析] 设y 1=k log 3x ,y 2=
m log 3x
, ∴当x =19时,k log 31
9=2,∴k =-1
当x =127时,m
log 3
1
27=-3,∴m =9
∴y =y 1+y 2=-log 3x +9
log 3x
.。