二阶效应(PPT)
- 格式:ppt
- 大小:732.00 KB
- 文档页数:7
一、混凝土结构的二阶效应混凝土结构的二阶效应应由两部分组成:p-δ效应和P-Δ效应。
p-δ效应是指由于构件在轴向压力作用下,自身发生挠曲引起的附加效应,可称之为构件挠曲二阶效应,通常指轴向压力在产生了挠曲变形的构件中引起的附加弯矩,附加弯矩与构件的挠曲形态有关,一般中间大,两端部小。
P-Δ效应是指由于结构的水平变形而引起的重力附加效应,可称之为重力二阶效应,结构在水平力(风荷载或水平地震力)作用下发生水平变形后,重力荷载因该水平变形而引起附加效应,结构发生的水平侧移绝对值越大,P-Δ效应越显著,若结构的水平变形过大,可能因重力二阶效应而导致结构失稳。
1.重力二阶效应(P-Δ效应)计算计算P-Δ效应的近似方法有等效几何刚度的有限元法、等效水平力的有限元迭代法、折减弹性抗弯刚度的有限元、结构位移和构件内力增大系数法等。
1)等效几何刚度的有限元法在不考虑P-Δ效应影响时,是在结构的初始拓扑关系基础上建立结构的平衡方程。
一般可记为:[K]{u}=[F]考虑P-Δ效应影响时,对于结构的任一节点j,因P-Δ效应而引起的Mj=Gjuj,相应的等效附加水平力为Vj= 。
对于所有节点,则形成一个等效附加水平分力向量。
可以看出,考虑P-Δ效应相当于结构的初始刚度矩阵[K]修改为等效刚度矩阵[K-KG]。
新规范版的SATWE、TAT、PMSAP等软件都采用了等效几何刚度的有限元法,这种方法具有一般性,它既适用于采用刚性楼板假定的结构,也适用于存在独立弹性节点的结构。
与不考虑P-Δ效应的分析结果相比,结构的周期、位移和构件的内力都有所不同。
2)折减弹性抗弯刚度的有限元法折减弹性抗弯刚度的有限元法是今年来美国、加拿大等国设计规范推荐的一种考虑效益方法。
这种分析方法的基本思路是采用折减等效刚度,近似的考虑钢筋混凝土结构中各类构件在极限状态时因开裂而导致刚度减小现象,使分析结果与设计状态尽可能一致。
《混凝土结构设计规范》引进该方法,第7.3.12规定,当采用考虑二阶效应的弹性分析方法时,宜在结构分析中对钢筋混凝土构件的弹性抗弯刚度乘以一下折减系数:梁取0.4,柱取0.6,对未开裂的剪力墙和核心筒取0.7,对已开裂的剪力墙和核心筒壁取0.45。
版图二阶效应二阶效应可以分为重力二阶效应(p−Δ)和构件挠曲二阶效应(p−δ),下面我们分别从这两者来探讨在混凝土结构设计中如何考虑二阶效应的影响:1.重力二阶效应当结构重力产生的附加弯矩大于初始弯矩的10%时需要考虑重力二阶效应,现行结构设计规范利用增大系数法(GB50010附录B、JGJ3-2010.5.4.3条和GB50010.3.6.3条文说明)考虑重力二阶效应的影响:M=Mns+ηsMs其中Ms为引起结构侧移的荷载所产生的一阶弹性分析构件端弯矩设计值(如水平地震作用);Mns为不引起结构侧移的一阶弹性分析构件端弯矩设计值(如对称结构在均布重力荷载作用下)。
上式使用了叠加原理的概念,即设计弯矩可以拆分为产生侧移荷载产生的弯矩和不产生侧移的荷载的弯矩之和,而重力二阶效应仅增加产生层间侧移的部分。
变形增量也同样使用增大系数法考虑:Δ=ηsΔ1上述的Δ为一阶弹性分析的层间位移,ηs为增大系数。
增大系数以框架结构举例:ηs=11−∑inGjDH0上式中D为侧移刚度;H0为计算楼层的层高;∑inGj为第i层以上全部重力荷载设计值之和。
对上式分母第二项略作化简可以得到:∑inGjΔuiViH0其中Δui层平均层间侧移;Vi为楼层剪力;可以发现,上式即为“重力附加弯矩与初始弯矩的比值”(具体定义参见何时需要考虑二阶效应?),由此可以发现,增大系数的表达式含义其实十分“朴素”,简单来说就是:考虑重力二阶效应弯矩值一阶弹性分析的弯矩值ηs=考虑重力二阶效应弯矩值一阶弹性分析的弯矩值关于增大系数的计算有下面两点值得注意:计算位移增大系数时,不对构件的刚度进行折减(JGJ3-2010.5.4.3条,GB50010.B.0.5)。
因为设计规范中给出的限值均为弹性位移限制,弹性位移限值需要和弹性位移计算结果所匹配。
计算内力增大系数时,对构件刚度进行折减,《高规》折减系数取0.5,《混规》则对不同构件选取不同的折减系数,见B.0.5条。
一、混凝土结构的二阶效应混凝土结构的二阶效应应由两部分组成:p-δ效应和P-Δ效应。
p-δ效应是指由于构件在轴向压力作用下,自身发生挠曲引起的附加效应,可称之为构件挠曲二阶效应,通常指轴向压力在产生了挠曲变形的构件中引起的附加弯矩,附加弯矩与构件的挠曲形态有关,一般中间大,两端部小。
P-Δ效应是指由于结构的水平变形而引起的重力附加效应,可称之为重力二阶效应,结构在水平力(风荷载或水平地震力)作用下发生水平变形后,重力荷载因该水平变形而引起附加效应,结构发生的水平侧移绝对值越大,P-Δ效应越显著,若结构的水平变形过大,可能因重力二阶效应而导致结构失稳。
1.重力二阶效应(P-Δ效应)计算计算P-Δ效应的近似方法有等效几何刚度的有限元法、等效水平力的有限元迭代法、折减弹性抗弯刚度的有限元、结构位移和构件内力增大系数法等。
1)等效几何刚度的有限元法在不考虑P-Δ效应影响时,是在结构的初始拓扑关系基础上建立结构的平衡方程。
一般可记为:[K]{u}=[F]考虑P-Δ效应影响时,对于结构的任一节点j,因P-Δ效应而引起的Mj=Gjuj,相应的等效附加水平力为Vj=。
对于所有节点,则形成一个等效附加水平分力向量。
可以看出,考虑P-Δ效应相当于结构的初始刚度矩阵[K]修改为等效刚度矩阵[K-KG]。
新规范版的SATWE、TAT、PMSAP等软件都采用了等效几何刚度的有限元法,这种方法具有一般性,它既适用于采用刚性楼板假定的结构,也适用于存在独立弹性节点的结构。
与不考虑P-Δ效应的分析结果相比,结构的周期、位移和构件的内力都有所不同。
2)折减弹性抗弯刚度的有限元法折减弹性抗弯刚度的有限元法是今年来美国、加拿大等国设计规范推荐的一种考虑效益方法。
这种分析方法的基本思路是采用折减等效刚度,近似的考虑钢筋混凝土结构中各类构件在极限状态时因开裂而导致刚度减小现象,使分析结果与设计状态尽可能一致。
《混凝土结构设计规范》引进该方法,第7.3.12规定,当采用考虑二阶效应的弹性分析方法时,宜在结构分析中对钢筋混凝土构件的弹性抗弯刚度乘以一下折减系数:梁取0.4,柱取0.6,对未开裂的剪力墙和核心筒取0.7,对已开裂的剪力墙和核心筒壁取0.45。