方程与等式的关系图
- 格式:docx
- 大小:19.41 KB
- 文档页数:1
方程和等式之间的关系方程和等式是数学中的重要概念,它们在解决实际问题和描述数学关系中起着关键作用。
方程和等式之间存在紧密的联系,它们既是数学语言中的重要组成部分,又具有深刻的数学内涵。
在本文中,我们将探讨方程和等式之间的关系,并通过具体例子来说明它们在数学中的应用。
让我们来了解方程和等式的定义。
方程是指包含未知数的数学表达式,其形式为“等号两边有表达式”的形式。
等式是方程的一种特殊形式,它要求等号两边的表达式的值相等。
可以说,等式是方程的一种特殊情况。
例如,2x + 3 = 7就是一个方程,而2x + 3 = 5就是一个等式。
方程和等式在数学中有着广泛的应用。
它们是解决实际问题的有力工具,可以用来描述各种数学关系。
例如,在代数中,我们可以通过方程和等式来解决未知数的问题。
通过建立方程和等式,我们可以求解未知数的值,从而解决各种实际问题。
这些问题可以涉及到各个领域,如物理、化学、经济等。
通过方程和等式,我们可以建立数学模型,对实际问题进行分析和求解。
在数学中,方程和等式的解是非常重要的。
解是指使方程或等式成立的未知数的值。
通过解方程和等式,我们可以求解未知数的值,并得到准确的结果。
解方程和等式的方法有很多种,如代入法、消元法、配方法等。
每种方法都有其适用的情况和使用的技巧。
通过灵活运用这些方法,我们可以解决各种复杂的数学问题。
方程和等式还可以用来描述数学关系。
数学关系是指数学中的各种关系,如等差数列、等比数列、函数关系等。
通过建立方程和等式,我们可以准确地描述数学关系,并分析其性质和规律。
例如,在等差数列中,通过建立等式,我们可以求解出数列中的任意一项的值。
在函数关系中,通过建立方程,我们可以求解函数的零点和极值,进而分析函数的图像和性质。
方程和等式的应用还可以延伸到其他数学领域,如几何、概率等。
在几何中,方程和等式可以用来求解各种几何问题,如求解直线与平面的交点、求解圆与直线的交点等。
在概率中,方程和等式可以用来描述事件的概率,通过求解方程和等式,我们可以计算出事件发生的概率,并进行概率的推导和分析。
整式方程〖知识点〗等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、简单的高次方程〖大纲要求〗1.理解方程和一元一次方程、一元二次方程概念;2.理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;3.会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程;4.了解高次方程的概念,会用因式分解法或换元法解可化为一元一次方程和一元二次方程的简单的高次方程;5.体验“未知”与“已知”的对立统一关系。
内容分析1.方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2.一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.3.一元二次方程的解法(1)直接开平方法形如(mx+n)2=r(r≥o)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.(2)把一元二次方程通过配方化成(mx+n)2=r(r≥o) 的形式,再用直接开平方法解,这种方法叫做配方法.(3)公式法通过配方法可以求得一元二次方程ax2+bx+c=0(a≠0)的求根公式:a acbbx24 2-±-=用求根公式解一元二次方程的方法叫做公式法.(4)因式分解法如果一元二次方程ax2+bx+c=0(a≠0)的左边可以分解为两个一次因式的积,那么根据两个因式的积等于O,这两个因式至少有一个为O,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法.〖考查重点与常见题型〗考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。
课时7.一元一次方程及其应用【课前热身】1.在等式367y-=的两边同时,得到313y=.2.方程538x -+=的根是 .3.x 的5倍比x 的2倍大12可列方程为 .4.写一个以2-=x 为解的方程 .5.如果1x =-是方程234x m -=的根,则m 的值是 .6.如果方程2130m x -+=是一元一次方程,则m = .【考点链接】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca . 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【典例精析】例1 解方程(1)()()() 3175301x x x --+=+; (2)21101136x x ++-=.例2 当m 取什么整数时,关于x 的方程1514()2323mx x -=-的解是正整数?例3 今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.【中考演练】1.若5x -5的值与2x -9的值互为相反数,则x =_____.2. 关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.3. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B . 25%150x ⋅=C .%25150=-xx D . 15025%x -= 4.解方程16110312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x xD. 611024=+-+x x5.解下列方程:()()()(1) 3175301x x x --+=+; (2)121253x x x -+-=-.6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?7. 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益; ④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1) 若租用水面 亩,则年租金共需__________元;(2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?课时8.二元一次方程组及其应用【课前热身】1. 在方程y x 413-=5中,用含x 的代数式表示y 为y = ;当x =3时,y = .2.如果x =3,y =2是方程326=+by x 的解,则b = .3. 请写出一个适合方程13=-y x 的一组解: .4. 如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )A.x =-3,y =2B.x =2,y =-3C.x =-2,y =3D.x =3,y =-2【考点链接】1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解.5. 解二元一次方程的方法步骤:二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.6.易错知识辨析:(1)二元一次方程有无数个解,它的解是一组未知数的值;(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;(3)利用加减法消元时,一定注意要各项系数的符号.【典例精析】例1 解下列方程组:(1){4519323a b a b +=--= (2){2207441x y x y ++=-=-例2 某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?消元 转化例3 若方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解相同,求m 、n 的值.【中考演练】 1.若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a . 2. 在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____.3. 下列方程组中,是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=+=+9114y x y x B .⎩⎨⎧=+=+75z y y x C .⎩⎨⎧=-=6231y x x D .⎩⎨⎧=-=-1y x xy y x 4. 关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m =( )A .2B .-1C .1D .-25.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4人 数 6 7表格中捐款2.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A .272366x y x y +=⎧⎨+=⎩B .2723100x y x y +=⎧⎨+=⎩C .273266x y x y +=⎧⎨+=⎩D .2732100x y x y +=⎧⎨+=⎩6.解方程组:①⎩⎨⎧=-=+1392x y y x ②⎪⎩⎪⎨⎧=---=+1213343144y x y x7. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?8. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. ① 求该同学看中的随身听和书包单价各是多少元?② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?课时9.一元二次方程及其应用【课前热身】1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .2.关于x 的一元二次方程1(3)(1)30n n x n x n +++-+=中,则一次项系数是 .3.一元二次方程2230x x --=的根是 .4.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 .5. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( )A .4B .0或2C .1D .1-【考点链接】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负.【典例精析】例1 选用合适的方法解下列方程:(1))4(5)4(2+=+x x ; (2)x x 4)1(2=+;(3)22)21()3(x x -=+; (4)31022=-x x .例2 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3 用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?【中考演练】1.方程 (5x -2) (x -7)=9 (x -7)的解是_________.2.已知2是关于x 的方程23x 2-2 a =0的一个解,则2a -1的值是_________. 3.关于y 的方程22320y py p +-=有一个根是2y =,则关于x 的方程23x p -=的解为_____.4.下列方程中是一元二次方程的有( )①9 x 2=7 x ②32y =8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0 ⑤ 2( x 2+1)=10 ⑥ 24x-x-1=0 A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤5. 一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c 的值为( )A .3,-10,-4 B. 3,-12,-2C. 8,-10,-2D. 8,-12,46.一元二次方程2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为( )A. -1B. 1C. -2D. 27.解方程(1) x 2-5x -6=0 ; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 222-x+1=0.8.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.﹡课时10.一元二次方程根的判别式及根与系数的关系【课前热身】1.一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根2. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 .3.设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= . 4.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.5.若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = .【考点链接】1. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 2. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .3.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式042≥-ac b ;② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.【典例精析】例1 当k 为何值时,方程2610x x k -+-=,(1)两根相等;(2)有一根为0;(3)两根为倒数.例2 下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④ 若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ) A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.例3 菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 .【中考演练】1.设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________,1211x x +=__________,(x 1-x 2)2=_______. 2.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数即可)3. 已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且12x =是方程的根,则a b +的值为 .4. 已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值是.5.已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A.3或1-B.3 C.1 D.3-或16.一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是( ) A.3B.3-C.13D.13-7.若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )A .m<lB .m>-1C .m>lD .m<-1 8.设关于x 的方程kx 2-(2k +1)x +k =0的两实数根为x 1、x 2,,若,4171221=+x x x x 求k 的值.9.已知关于x 的一元二次方程()2120x m x m --++=.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+课时11.分式方程及其应用〖知识点〗分式方程、二次根式的概念、解法思路、解法、增根〖大纲要求〗了解分式方程、二次根式方程的概念。
函数、方程、不等式之间的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就是在函数解析式23y x =-中,令0y =即可。
令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解和一次函数与x 轴的交点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
方程(组)与不等式(组) 知识结构表 方程: 含有未知数的等式叫做方程.有关概念 方程的解:能使方程两边的值相等的未知数的值,叫做方程的解.解方程: 求方程的解的过程叫做解方程.定义: 只含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程。
(1) 一元一次方程 解法: 去分母、去括号、移项、合并同类项、系数化为1.定义: 含有两个未知数,且未知项的次数都是1的整式方程,叫做二元一次方程.由这样的几个方(2) 二元一次方程(组) 程所组成的方程组叫做二元一次方程组.方程组里各个方程的公共解叫做这个方程组的解.分类 解法: 基本思想是消元,基本方法是代入消元法、加减消元法.方程(组) 定义:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.它的一般形式为02=++c bx ax (0≠a )。
(3)一元二次方程 解法; 直接开平方法、配方法、因式分解法、求根公式法.根的判别式(ac b 42-=∆):当0>∆时,一元二次方程有两个不相等的实数根;当0=∆时,一元二次方程有两个相等的实数根;当0<∆时,一元二次方程没有实数根.以上结论,反之亦成立.方 定义:分母中含有未知数的方程叫做分式方程.程 (4)分式方程 解法:其基本思想是将分式方程转化为整式方程,其方法是运用等式性质在方程两边同乘以最简公分母.解与 分式方程必须要验根.有时也可采用换元法.不 应用: 一般步骤:①审清题意,找出等量关系;②设未知数;③列出方程(组);④解方程(组);⑤检验方程(组)的根;⑥作答.等式 不等式:用不等号表示不等关系的式子叫做不等式.不等式的解: 使不等式成立的未知数的值叫做不等式的解.有关概念不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.解不等式:求不等式的解集的过程,叫做解不等式.性质1:如果a>b,那么a+c>b+c,a-c>b-c.不等式的性质性质2:如果a>b,并且c>0,那么ac>bc.性质3:如果a>b,并且c<0,那么ac<bc.定义: 只含有一个未知数,且未知数的最高次数是1的不等式.不等式(组) 一元一次不等式解法:基本步骤是:去分母、去括号、移项、合并同类项、系数化为1.特别要注意当系数化为1时,不等式两边同乘以(或除以)同一个负数,不等号的方向必须改变.分类定义:几个未知数相同的一元一次不等式所组成的不等式组叫做一元一次不等式组.一元一次不等式组解法:求出不等式组中每一个不等式的解集,再求出解集的公共部分.解集有如下规律: 同大取大;同小取小;大小小大取中间;大大小小题无解.应用: 解不等式(组)在实际问题中的应用,关键是使学生能从实际问题中抽象出数量关系,列出不等式(组),建立不等式模型,通过转化为纯数学问题来解决实际应用问题.在列不等式时还要密切关注题中的不等关系,如“至少”,“至多”,“不大于”,“不小于"等等.。
方程的意义和性质1. 方程的意义含有未知数的等式就是方程。
2. 方程与等式的关系:所有的方程都是等式,但等式不一定是方程。
3. 等式的性质①等式性质1:等式两边加上或减去同一个数,左右两边仍然相等。
②等式性质2:等式两边乘以同一个数,或除以同一个不为0的数,左右两边仍然相等。
巧解简易方程:1. 形如b a x =±的方程的解法:b a x =+ b a x =-解: a b a a x -=-+ … 等式的性质1 … 解:a b a a x +=+-a b x -= a b x +=2. 形如)0(≠=a b ax 的方程的解法:b ax =解:a b a ax ÷=÷ … 等式的性质2a b x ÷=补充:形如()0≠=÷a b a x 的方程的解法与b ax =的解法基本相同:b a x =÷解:a b a a x ⨯=⨯÷ … 等式的性质2ab x =3. 扩展:形如b x a =-和b x a =÷的方程的解法:b x a =- b x a =÷解:x b x x a +=+- … 等式的性质1 解:x b x x a ⨯=⨯÷…等式性质2x b a += x b a ⨯=a xb =+ … 等式左右交换位置 a x b =⨯…等式左右交换位置b a b x b -=-+ … 等式的性质1 b a b x b ÷=÷⨯…等式的性质2b a x -= b a x ÷=解方程时需要注意的问题:① 首先要写“解”字;② 根据等式的性质解方程;③ 所有的等号要对齐;④ 求出方程的解后,要检验,检验的格式与解方程的格式相同,等号对齐。
等式与方程的关系与区别
等式与方程的关系与区别
等式与方程是代数运算中的基本概念,由于它们都可以用来表示变量之间的关系,因此经常会被混淆。
但实际上,它们俩有着本质上的不同之处。
一、等式和方程的定义
等式是一种数学表达式,用于表示两个表达式的值相等。
它只能表达一种确定的关系,即两个表达式的值完全相等,可以用来验证结论,而不能用来表达其他关系。
方程是一种数学表达式,用于表达变量之间的关系。
它可以表达不同的关系,可以用来求解未知变量的值。
二、等式与方程的区别
1、定义不同:等式是比较两个表达式值是否相等,而方程是描述变量之间的关系;
2、用途不同:等式只能用来验证结论,而方程可以用于求解未知变量。
3、格式不同:等式只能在一边限定变量的值,而方程可以在两边定义变量的值;
4、处理不同:等式只需要简单的比较,而方程需要分析变量之间的关系,才能求解未知变量。