搅拌桨叶的选型和设计计算
- 格式:doc
- 大小:18.66 MB
- 文档页数:13
搅拌桨叶尖速度计算公式
搅拌桨叶尖速度计算公式是用来计算搅拌器桨叶尖部分的旋转速度的公式。
搅拌桨叶尖速度是指桨叶尖部分在旋转过程中所达到的最大线速度。
这个速度对于搅拌器的搅拌效果以及机械结构的设计都非常重要。
要计算搅拌桨叶尖速度,我们可以使用以下公式:
搅拌桨叶尖速度 = 桨叶旋转半径 × 桨叶旋转角速度
其中,桨叶旋转半径是指从桨叶转轴到桨叶尖部的距离,通常以米为单位表示;桨叶旋转角速度是指桨叶单位时间内旋转的角度,通常以弧度/秒为单位表示。
通过这个公式,我们可以精确地计算出搅拌桨叶尖速度,从而更好地了解搅拌器的运行状态和搅拌效果。
当然,在实际应用中,我们还需要考虑到其他一些因素,如桨叶的形状、桨叶的数量、搅拌介质的性质等等。
这些因素也会对搅拌桨叶尖速度产生一定的影响。
总结一下,搅拌桨叶尖速度计算公式是一个重要的工具,可以帮助我们准确地计算出搅拌器桨叶尖部分的旋转速度。
这个公式在搅拌器的设计和搅拌效果评估中起到了关键的作用。
通过合理地使用这个公式,我们可以更好地提高搅拌器的搅拌效率,从而为各行各业
的生产提供更好的服务。
搅拌叶选型相关知识见《搅拌设备》,主要分径向流和轴向流叶轮两种三叶推进式是最典型的轴流型搅拌器,高排液量,低剪切性能;采用挡板或导流筒则轴向循环更强。
排出性能明显提高,因为它循环能力强,动力消耗低,在低粘度,大容量均相、混合过程中应用最能体现它的优势,在低粘度的液体传热、反应、固液比小时的悬浮、溶解等过程中应用广泛。
可调推进式的桨叶可转动±15°,调整倾角,在试验性的工艺过程中作用很大。
可拆推进式的桨连轮毂分成三辨,组装方便,用在需要拆成小件的场合。
常用介质μ<2000cP,常用运转速度n=100~500rpm,v=3~15m/s,最高转速可达1750rpm,常用规格S/DJ=1或2,DJ/D=0.2~0.5,表面要求抛光处理的必须选用焊接型。
螺杆式搅拌器此类搅拌器为慢速型搅拌器,在层流区操作,液体沿着螺旋面上升或下降形成轴向的上下循环,适用于中高粘度液的混和和传热等过程,螺杆式搅拌直径小,轴向推力大,可偏心放置,桨叶离槽壁的距离<1/20 DJ,槽壁可起挡板作用。
螺杆带上导流筒,轴向流动加强,在导流筒内外形成向下向上的循环。
此时,可取导流筒直径D’=0.7D,DJ/Do=0.95,常用介质粘度μ<105 cP,常用运转速度n=0.5~50rpm,ν<1m/s。
三窄叶旋桨式搅拌器也是常用的旋桨式搅拌器,性能、应用都相似,相对于宽叶旋桨式,它的排出流量小些,输入功率小些,常用介质粘度μ<104cP,常用转速n=60~500rpm,常用尺寸DJ /D=0.2~0.5,B/DJ=0.2,常用左旋,可制成右旋。
斜叶桨式搅拌器此搅拌器桨叶可成24°、45°或60°倾角,有轴向分流、径向分流,流型比平直叶桨式复杂,排出能量比平直桨高,综合效果更好,适用过程相同,因此应用频率比平直叶桨式高,运行条件同平直叶桨式。
六叶开启涡轮式搅拌器本类搅拌器流型为径向流,在有挡板时可自桨叶为界形成上下两个循环流,具有高剪切力和较大的循环能力,其中直叶开启涡轮式剪切力最大,弯叶开启涡轮式剪切力最小,斜叶开启涡轮居中。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A A C CI --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
搅拌器设计计算(作者:纪学鑫)一、设计数据:1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m ³∴设混合池有效容积V=8m ³2、混合池流量Q=0.035m ³/s3、混合时间t=10s4、混合池横截面尺寸1.15m × 1.15m ,当量直径D=πω4L =π15.115.14⨯⨯=1.30m 5、混合池液面高度H =24πD V =m ..π036301842≈⨯⨯ ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈⎪⎭⎫ ⎝⎛D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。
7、取平均水温时,水的粘度值()s a ⋅P μ=1.14×10-3s a ⋅P取水的密度3/kg 1000m =ρ8、搅拌强度1)搅拌速度梯度G ,一般取500~1000s -1。
混合功率估算:N Q =K e Q(kw)K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ⋅∴混合功率估算:3/s kw 17~3.4m N Q ⋅=1-3-3e e )30.1365~65.686(s8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈⨯⋅⨯⋅===⇒)(μμ 取搅拌速度梯度1-s 740=G2)体积循环次数'Z搅拌器排液量'Q ,213.08.008.1385.0)/(333'=⨯⨯==s m nd k Q q折叶桨式,片,245=︒=Z θ,流动准数385.0k q 取,见表4-27查取;---n 搅拌器转速)(s /r ;d 搅拌器直径(m) 转速d 60n πν=;---线速度v ,直径d ,根据表4-30查取。
搅拌机的设计计算7.5kw 搅拌机设计:雷,此时为湍流,2K Np ==φ常数。
查表知:诺数的计算:4032.08.0130010436833Re 260852⨯≈===⨯⨯μραin 即410Re >蜗轮式,四平片时,5.42=K 。
由公式513d n N N p ρ=,式中Np ——功率准数。
则,搅拌功率5132d n K N ρ= 5360858.0)(13005.4⨯⨯⨯= W W 45.55450== 则,电机的最小功率为: ηNN =电 ,取η=0.85则KW N 41.685.045.5电==则选用电机的功率为7.5KW 。
圆盘直径φ450mm ,选定叶轮直径φ800mm 。
桨叶的危险断面Ⅰ—Ⅰ(如上图):该断面的弯矩值: (对于折叶蜗轮)θSin nN x r x Zj M 155.9030⨯⨯⨯=-式中n ——转速;N ——功率;x ——桨叶上液体阻力的合力的作用位置。
计算公式为:32314241430r rr r x --⨯= 334412.04.012.04.043--⨯= =0.306(m)则θSin nN x r x Zj M 155.9030⨯⨯⨯=-0345185105.7306.0225.0306.0455.9Sin ⨯⨯⨯=⨯- =78.86(N.m )(Z=4叶片,θ=45°倾角)对于Q235A 材料,MPa 240~2205=σ当取n=2~2.5时,[σ]=88~100Mpa. 取[σ]=90Mpa 计算,得62bh =ω(矩形截面) 且b=200mm ,求h 值。
由][σω≥M有666.81090622.0⨯≥⨯⨯h η,可得h ≥0.00512m, 即h ≥5.12mm考虑到腐蚀,则每边增加1mm 得腐蚀余量。
即,需叶片厚度为≥7.12, 取8mm 厚的钢板。
叶轮轴扭转强度计算验证叶轮轴选用φ76×5的无缝钢管,材料20号钢。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A A C CI --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
(2.0m3)锚式搅拌机设计计算1 已知参数:反应釜尺寸φ1300X15002 搅拌器选型:搅拌介质为高黏度液体,选用锚式搅拌机;3 参数确定:介质粘度μ=10PaS介质密度ρ=1500kg/m3设定搅拌机转速n=25r/min选取桨叶直径d=1.17m3 求外缘线速度:v=nπd/60=25×π×1.17/60=1.53m/s(搅拌器的外缘线速度范围为1-5m/s)4 求雷诺数:Re=d2nρ/μ=1.172×(25/60)×1500/10=85.565 根据雷诺数,可求的功率准数Np=2.7446 求搅拌功率: N=Npρn3d5/102g=2.744×1500×(25/60)3×1.175/102×9.81=0.6524kw7 校核搅拌强度:⑴根据体积循环次数Z’(此方法根据美国凯米尼尔公司和莱宁公司有关资料)A 搅拌器排液量Q’=Kqnd3=0.77×(25/60)×1.173=0.514m3/s。
其中Kq-流动准数,搅拌器的流动准数为0.77B 体积循环次数Z’=Q’t/V=0.514×30/2=6.28其中t-混合时间,V-有效容积。
在混合时间内,池内液体的体积循环次数不小于1.2,所以满足搅拌强度的要求。
⑵根据混合均匀度U (此方法根据美国凯米尼尔公司和莱宁公司有关资料)-ln(1-U)=tan(d/D)b(D/H)0.5其中t-混合时间,a,b-混合速率常数,U-混合均匀度得出U=98%,满足搅拌强度要求。
8 电机功率计算:NA=KgN/η=1.2×0.6524/0.9=0.87KW。
其中Kg-电机工况系数,η-机械传动效率。
9 选用电机功率为4KW,锡减牌减速机BLD13-59-4KW10搅拌轴计算:⑴按扭转强度计算:d1≥C1(NA/n)(1/3)=89.2×(2.2/25)(1/3)=55.52mm⑵按扭转刚度计算:d2=C2(NA/n)(1/4) =91.5×(2.2/88)(1/4)=49.83mm故按结构取搅拌轴直径d=65mm。
制浆高速搅拌桨叶优化设计搅拌是纸浆制造的关键环节之一,它能够使浆料更加均匀地混合,为后续的生产工序提供良好的基础。
而搅拌的核心在于搅拌桨叶的设计与制造。
近年来,随着纸浆制造技术的不断发展,制浆高速搅拌桨叶的优化设计越来越受到关注。
制浆高速搅拌桨叶的设计原理制浆高速搅拌桨叶的设计原理主要涉及纸浆的流体力学和搅拌力学。
为了实现最佳的影响效果,搅拌桨叶必须在纸浆流动情况下获得适当的旋转和推动力。
此外,搅拌桨叶的结构必须与生产工艺相适应,以满足将浆料混合均匀的要求。
因此,在进行制浆高速搅拌桨叶的设计过程中,需要考虑多种因素,包括流体力学、搅拌力学、结构受力和生产工艺等方面。
优化设计的必要性在制浆生产中,提高搅拌桨叶的效率和质量是一个非常重要的问题。
市场竞争的加剧也使得制浆企业更加注重搅拌桨叶的优化。
然而,优化搅拌桨叶的设计并不是一件容易的事情。
需要考虑多种因素,如搅拌桨叶的形状、角度、旋转速度、流量等等。
因此,只有通过深入的研究和创新思维,才能找到更加有效、节约原材料、能够提高生产效率的高速搅拌桨叶设计方案。
优化设计的具体措施针对制浆高速搅拌桨叶的优化设计,可以采用多种措施来提升搅拌桨叶的效率和质量。
这些措施包括:1.采用先进的计算技术对搅拌桨叶进行模拟分析;2.优化搅拌桨叶的形状和角度,提高纸浆制造的混合效率;3.控制搅拌桨叶的旋转速度和流量,使得纸浆得到最佳的混合效果;4.采用先进的材料技术,选择更加优质的搅拌桨叶材料;5.根据生产实际需要,针对固体浆料、液体浆料等不同类型的纸浆进行适当的搅拌桨叶设计和制造;6.加强搅拌桨叶的维护和保养,延长使用寿命。
总之,制浆高速搅拌桨叶的优化设计是一个系统性、复杂性和多样性较强的问题。
在设计过程中,应该综合考虑多种因素,采用科学的方法和优质的材料,制造出更加高效、优质的搅拌桨叶,进一步推动纸浆制造的技术进步。
桨叶式搅拌机的设计摘要桨叶式混凝土搅拌机是一款小型搅拌机,主要适用于较小的建筑工程,是非常重要的建筑机械。
它是强制式卧轴搅拌机的一种,不但能搅拌干硬性混凝土,而且能搅拌轻骨料混凝土,是一款多功能搅拌机。
在搅拌过程中,通过搅拌轴的回转运动来带动搅拌叶片对筒内物料进行剪切、挤压和翻转推移等搅拌作用,使物料在相对的剧烈运动中的得到充分的拌合,因而它具有拌合质量好、能耗低、效率高等优点。
现代建筑工程中搅拌机的广泛应用,不仅减轻了工人的劳动强度,还提高了混凝土工程的质量,对我国的基础设施建设做出了很大贡献。
在下一个五年规划中,国家加大了基础设施的建设的力度,这对混凝土机械行业的发展是十分有利的。
该类型搅拌机的主要组成结构包括:传动系统、搅拌系统、上料系统、卸料系统、电气控制系统等零部件。
在本次设计中主要设计的是外壳和搅拌轴,还确定了上料、卸料的方式以及叶片的结构,并对部分零部件进行了校核,使之满足不同场合的工作要求。
关键词:混凝土搅拌机、质量、能耗、效率The design of Vertical spindle type breakerAbstractBlade type concrete mixer is a small mixer, mainly is suitable for the small construction projects, it is very important to construction machinery.It is a kind of forced horizontal-axis mixer ,not only can mix the dry and rigid concrete, but also can stir light weight aggregate concrete,is a new multi-functional mixer。
In mixing process, through the rotary motion of stirring shaft of mixing blades to drive the material in the cylinder of shear, squeezing and flip elapse, make the material such as mixing effect in the relatively intense exercise fully with white, so it would be of good quality, low energy consumption, higher efficiency. Modern architectural engineering of mixer widely used, not only reduce the labor intensity of the workers, but also improves the concrete engineering quality, has made a great contribution the infrastructure construction of our country. In the next five-year plan, the government increased the strength of the infrastructure construction of concrete, the machinery industry development is very favorable. This type of main composition structure including blender, transmission system, mixing system, feeding system, unloading system and electrical control system components. In this design, we mainly on the transmission scheme selection and design calculation, also identified loading, unloading and ways of blade structure, and checks for some parts to meet different occasions work requirements.Keywords:concrete mixer, quality, energy consumption, efficiency目录第一章绪论 (5)1.1混凝土搅拌机项目研究的目的及意义 (5)1.1.1混凝土的组成 (6)1.1.2搅拌的任务 (6)1.1.3设计混凝土搅拌机的意义 (6)第二章技术设计任务书 (8)2.1搅拌机设计的依据及参数 (8)2.2搅拌机的工作范围及用途 (8)2.3混凝土搅拌机总体布局及结构概述 (8)2.4搅拌机的关键技术 (8)第三章搅拌机主参数及各部件的设计计算 (10)3.1总体设计方案 (10)3.1.1混凝土搅拌机各个品种功能的比较 (10)3.1.2混凝土搅拌机结构的选择 (11)3.2总体结构及工作原理 (11)3.2.1结构组成及工作原理 (11)3.2.2主要技术参数 (12)3.3搅拌机主要部件的设计 (12)3.3.1搅拌装置的设计 (12)3.3.2机架和搅拌筒的设计 (12)3.4传动系统的设计 (13)3.4.1电机的选择 (13)3.4.2 传动部分设计 (14)第四章桨叶式搅拌机主要参数的确定 (17)4.1传基本结构参数 (17)4.1.1转子的直径与长度 (17)4.1.2基本结构尺寸 (17)4.2主要工作参数的确定 (17)4.2.1转子的速度 (17)4.2.2生产能力 (17)4.2.3功率 (18)4.3转子的结构设计 (18)4.3.1轴的结构设计 (18)4.3.2轴的强度计算 (19)4.3.3破碎力的确定 (19)4.3.4轴的受力分析 (19)4.4轴承和键的选用 (21)4.4.1轴承的选用和润滑 (21)4.4.2键的选用 (22)第五章混凝土搅拌机搅拌叶片的有限元分析 (23)5.1搅拌叶片有限元模型的建立 (23)5.2优化设计和结果分析 (25)第六章结论 (26)参考文献 (27)感谢 (28)第一章绪论1.1混凝土搅拌机项目研究的目的及意义随着改革开放的持续推进,我国经济建设及科学技术的高速稳步增长,城镇化和新农村建设的大力发展,农村和大城市基础设施建设、房地产商品房开发业务的快速发展,直接促进了混凝土生产产量的快速增长机械化建设在施工中占据了重要的的地位。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成
组成:搅拌器电动机
减速器容器
排料管挡板
适用物料:低粘度物料
二、混合机理
利用低粘度物料流动性好的特性实现混合
1、对流混合
在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。
包括两种形式:
(1)主体对流:搅拌器带动物料大范围的循环流动
(2)涡流对流:旋涡的对流运动
液体层界面强烈剪切旋涡扩散
主体对流宏观混合
涡流对流
2、分子扩散混合
液体分子间的运动微观混合
作用:形成液体分子间的均匀分布
对流混合可提高分子扩散混合
3、剪切混合
剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。
高粘度过物料混合过程,主要是剪切作用。
电
动
机
减速器
搅
拌
器
容
器
排料管
三、混合效果的度量 1、调匀度I
设A 、B 两种液体,各取体积vA 及vB 置于一容器中,
则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀
若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:
(当样品中CA < CA0时)
或 (当样品中CA > CA0时)
显然 I ≤1
若取m 个样品,则该样品的平均调匀度为
当混合均匀时
2、混合尺度
设有A 、B 两种液体混合后达到微粒均布状态。
B
A A A V V V C +=00A A C C I =0
11A A C C
I --=m I I I I m
+⋯⋯++=-
211
=-I
混合尺度分 设备尺度 微团尺度 分子尺度 对上述两种状态:
在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失,称分子尺度的均匀或微观均 匀) 如取样尺寸远大于微团尺寸,则两种状态的平均调匀度接近于己于1。
如取样尺寸小到与b 中微团尺寸相近时,则b 状态调匀度下降,而a 状态调匀度不变。
即:同一个混合状态的调匀度随所取样品的尺寸而变化,说明单平调匀度不能反映混合物的均匀程度 四、搅拌机主要结构 1、搅拌器
搅拌器由电动机带动,物料按一定规律运动(主体对流),桨型不同,物料产生的流型不同。
桨作用于物料,物料产生三个方向的速度分量:
轴向分量经向分量切向分量当 ,桨对中安装, n 。
液体绕轴整体旋转, 不利于混合。
(1)旋桨式搅拌器
类似于无壳的轴流泵结构:
④d j=(0.2~0.5)D (0.33居多) d j :L :b=20:5:4 ⑤适合混合中低粘度的物料, μ≤5000c
u=4~8m/s n=10~300r.p.m 。
⑥回路较曲折,出口速度大,湍动程度强,剪切力大,可将微团细化。
特点:
①流型:径向流型 伴有 轴向流 切向流 ②有两个回路
③易产生“分层效应”
(不适于混合含有较重固体颗粒悬浮液)
(2)涡轮式搅拌器 相似于无壳的离心泵 组成:圆盘、轴、
叶片(4~8)
(3)桨式搅拌器
当μ 搅拌器 提供的机械能因粘性阻力而消耗 湍动程度 主体流动范围 例:同一规格的涡轮式搅拌器,混合不同粘度的物料,混合效果差别很大。
结构:
桨式搅拌器特点:
①桨叶尺寸大, dj/D=0.5~0.8 宽度大,b:dj=0.1~0.25
②转速低,u=1.5~2m/s ; n=1~100 rpm
③流型:径向流
切向流
桨叶倾斜,可产生小范围轴向流
④适合低粘度物料μ>5000CP
⑤当容器内液位较高时,可在同一轴上安装几个桨叶。
(4)锚删式搅拌器
结构:
2、搅拌容器
形状:
圆弧底:有利于产生流型,加速混合,没有死角,功耗低。
锥型底:有利于底部排料,流型差,底部易产生停滞现象,
均匀程度差。
(2)设计
容器壁厚按压力容器设计标准及技术条件进行设计。
(3)容器容量及结构尺寸
①容器长径流比H/D
搅拌容器装满程度用装满系数η
η=Vg/ V
式中: V g 实际盛装物料的容积 V 容器全容积 η=0.6~0.85
如搅拌过程中起泡沫或呈沸腾状态 η=0.6~0.7 (取低值)
当物料反映平稳或粘度较大时 η=0.8~0.85 (取高值) ③容器直径与高度
确定方法:先初算(忽略封头容积),后较核计算. 直径计算:
将H/D 及V=V g/η 代入
注:D 应圆整为标准直径 容器高度计算:
式中:v 封头部分容积
注:H 应圆整
校核:H/D 及η值是否在推荐范围内 3、挡板 (1)打漩
当被搅拌液料出现沿圆周做整体旋转运动时,这种流动状态叫打旋。
(2)打旋的危害
①几乎不存在轴向混合,会出现分离现象。
②液面下凹,有效容积降低。
③当旋涡较深时,会发生从液体表面吸气现象,引起液体密度变化或机械振动。
(3)常见消除打旋的方法
①偏心安装
D H D H D V 32
44ππ==3
)/(4D H Vg D ηπ=H D v V 24
π=-24D
v
Vg H πη-=
②倾斜安装
③側壁安装
消除打旋最简单常用的方法是在容器内加设挡板(4)挡板的结构与作用
结构
作用: ①消除打旋
②将切向流改变为轴向流和径向流 ③增大液体的湍动程度 (5)充分挡板化
实践证明:实现充分挡板化的条件为
式中:W b —挡板宽度 d j —液轮直径 n b —挡板数目
通常:
是否所有液体搅拌机无论混合物料的粘度多大都应加设挡板?
A 、低粘度物料,转速较高,桨对中按装时,应加挡板,挡板紧贴内壁。
B 、中粘度物料,挡板离开壁面安装,防止死区。
C 、高粘度物料(μ=12000cp ) 流体粘度足以抑制打旋,可不加挡板
35
.0.)(2.1=b b n dj
W 101=dj W b 4
=b n
五、功率计算 1、计算方法
影响功率的因素: N=f(n,d j,ρ,μ,g)
结构参数:d j 、D 、 H 、W b
运动参数:
找出无因次数群 物性参数:ρ、μ 用
式中:φ—功率因素
当加设挡板时,消除打旋,Y=0, Fr=1. ∴ φ=Np=k Rex
对数式:logNp =logK + XlogRe
以φ或Np 为纵坐标,以Re 为横坐标绘制功率曲线 2、功率曲线
x
e y r p R K F N ⋅==φ
(1) Re<10时,(层流区)为直线, 斜率为-1。
∴logNp =logK -logRe
将Np,Re代入得
N= Kn2 dj3
试验测得:k≈1 当 n一定时功率与μ.dj3 成正比(2) 10 < Re < 104时,(过渡流区)
(3) Re > 104时,(湍流区) 曲线呈水平
无挡板,功率消耗少,易打旋,效果差
有挡板,功率消耗增加,效果好。
注:∵为无因次数群,不针对特定尺寸
∴与曲线描述的搅拌器几何尺寸相近的均可用该曲线计算。