高等代数 第四章 线性变换
- 格式:doc
- 大小:1.94 MB
- 文档页数:21
高等代数中的线性变换思想应用
在高等代数中,线性变换是一种非常重要的概念。
它是指将向量空间中的每一个向量映射到另一个向量的一种函数。
线性变换具有如下性质:
线性变换对应的线性方程组可以用线性方程组的通解表示。
线性变换满足线性性质,即对于任意的两个向量 $x$ 和$y$,以及任意的两个标量 $\alpha$ 和 $\beta$,都有:$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$ 线性变换满足向量空间中的加法性质,即对于任意的两个向量 $x$ 和 $y$,都有:$$T(x+y) = T(x) + T(y)$$ 线性变换的应用非常广泛,在许多领域都有广泛的应用,如:
在线性代数中,线性变换可以用来描述向量空间的线性变换、线性映射、线性映射等概念。
在拉格朗日插值中,线性变换可以用来描述拉格朗日插值多项式的构造。
在图像处理中,线性变换可以用来描述图像的平移、旋转、缩放等变换。
在机器学习中,线性变换可以用来描述线性回归、线性判别分析等模型,以及神经网络中的线性变换层。
总之,线性变换是一种非常重要的概念,在高等代数中有着广泛的应用,并在许多领域中都被广泛使用。
它可以用来描述向量空间的线性变换、线性映射、线性映射等概念,也可以用来描述图像的平移、旋转、缩放等变换,以及机器学习中的线性回归、线性判别分析等模型,以及神经网络中的线性变换层。
一个线性变换的所有不变子空间探讨摘 要线性变换的不变子空间理论是高等代数的重要理论之一,但是对于一个线性变换的所有不变子空间,在高等代数教材中也只是简单的讲解一下,于是本文对它做了更进一步的讨论.本文首先给出了线性变换与不变子空间的定义,然后介绍线性变换以及不变子空间的性质,讨论了复数域及一般数域P 上的线性空间的线性变换的不变子空间.同时本文总结了求解一个线性变换所有不变子空间的方法,并且结合一些实例加以应用.关键词:线性变换,子空间,不变子空间引言线性变换与不变子空间是高等代数中的重要的概念,但是对于一个线性变换的所有不变子空间的探讨,在高等代数教材中也只是粗略的讲解一下.为了增加这方面的知识,本文首先给出了线性变换,子空间的定义和不变子空间的性质,由线性变换与不变子空间的相关定理,得出复数域上和一般数域P 上的线性变换的所有不变子空间. 这样对每一个具体的线性变换,我们能表示出它的不变子空间,所以本文尝试探究一个线性变换的所有不变子空间的求法,又给出了一些具体应用事例.本文如不特别指明,所考虑的线性空间V 都是某一数域P 上的线性空间V,线性空间V 上的线性变换的集合为L(V).一、预备知识(一)、线性变换和不变子空间定义定义1[1] 线性空间V 的一个变换σ称为线性变换,如果对于V 中任意的元素,αβ和数域P 中任意数k ,都有()()()σαβσασβ+=+()()k k σασα=定义2[1] 设σ是数域P 上线性空间V 的线性变换,W 是V 的子空间.如果W中的向量在σ下的像仍然在W 中,换句话说,对于W 中任意一个向量ξ,有(),W σξ∈我们W是σ的不变子空间,简称σ-子空间.(二)、不变子空间的性质性质1[2] 设()L V σ∈,1V ,2V 都是σ的不变子空间,则1212,V V V V + 都是σ的不变子空间. 性质2[2] 设()L V σ∈,若1V 为σ的不变子空间,则1V 也是()f σ的不变子空间,其中()f x 是数域P 上x 的多项式. 性质3[3] 设()L V σ∈,若σ可逆且1V 为σ的不变子空间,则1V 也为1σ-的不变子空间.性质4[3] 设W 是线性变换σ,τ的不变子空间,则W 在στ+,στ下也不变.二、复数域上线性变换的所有不变子空间我们来研究Jordan 块mmJ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλ11定理4[2] 设V 是复数域上n 维线性空间,σ是V 的线性变换,在基1α,2α, ,n α 下的矩阵是一若当标准形11A λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭证明:σ有且仅有{}0和以下非零不变子空间1(,,,)i i i n W L ααα+= ,(1,2,,)in =证明 由不变子空间性质可知,{}0是σ的不变子空间.又由于A 中一阶主子式所在列的其他元素全部是零的只有第n 列,因此一维不变子空间仅有()n L α;A 中二阶主子式所在列其余元素全部是零的子式只有第1n -,n 列的主子式,故二维不变子空间只有1(,)n n L αα-,以此类推可得,A中所在列的其他元素均为零的1n -阶主子式为第2,,n 列的主子式为111n λλλ-.因此σ的1n -维不变子空间仅有2(,,)n L αα ,而n 维不变子空间只有12(,,,)n V L ααα=综上,于是得到σ的非零不变子空间有且仅有n 个1(,,,)i i i n W L ααα+= ,(1,2,,)in = .注:由此证明了以下推论:推论1 V 中包含1α的σ的不变子空间只有V 自身; 推论2 V 中σ的任一非零不变子空间都包含n α; 推论3 V 不能分解成σ的两个非平凡不变子空间的直和;1111(,,,)ii i i in n jn j n n W L ααα---++++= ,(1,2,,)i jn =,(1,2,,)is = .定理4[1] 在复数域上 (1)如果线性变换σ是一个对称变换,那么σ的不变子空间的正交补也是σ的不变子空间.(2)如果线性变换σ是一个反对称变换,那么σ的不变子空间的正交补也是σ的不变子空间.(3)如果线性变换σ是一个酉变换,那么σ的不变子空间的正交补也是σ的不变子空间.三、一般数域P 上的线性变换的不变子空间例1 对任意的()L V σ∈,V本身及零子空间都是σ的不变子空间,称为平凡不变子空间.例2 对任意的()L V σ∈,分别称 (){V V σα=∈︱,}V βασβ∃∈=1(0){Vσα-=∈︱0}σα=为σ的像与核.容易证得()v σ与1(0)σ-都是σ的不变子空间.例3[6] 设()L V σ∈,λ是σ的一个特征值,()L V ε∈为V的恒等变换,则称{VVα*=∈︱存在正整数k ,()0}kλεσα-=为σ的对应于λ的根子空间,Vα*∈称为σ的属于λ的高为k 的根向量,V λ*为σ的不变子空间. 证明 若∀,V λαβ*∈,其高分别为12,k k ,令12m a x {,}kk k =,则,a bP∈,()()[()()][()Kkka b a b λεσαβλεσαλεσβ-+=-+- 1122[()()()][()()()]k k kk k k a b λεσλεσαλεσλεσβ--=--+--12[()(0)][()(0)]k k k k a b λεσλεσ--=-+-= 0故V λ*为V 的子空间.又设Vα*∈且高为k ,则()()[()]kkλεσσαλεσσα-=- = [()]kσλεσα-=(0)σ= 0 故V λ*为σ的不变子空间.四、应用举例例4[8]设σ是2R 的线性变换,σ在基12,εε下矩阵2512A -⎛⎫=⎪-⎝⎭,求σ的所有不变子空间解 在V 中至少有以下四个σ的不变子空间:2R ,{0},2()R σ,1(0)σ-,又A ≠,知σ为可逆的线性变换. 故,2()R σ=2R ,1(0)σ-={0},此外若还有其它不变子空间必是一维的,因而应为特征向量所生成,但是由于σ的特征多项式2()1f λλ=+无实根,故σ在R 中无特征值,从而没有实特征向量,这表明σ仅有两个平凡的不变子空间.结论 (1)在求σ的所有不变子空间时,既不能漏掉也不能重复. (2)给定σ后,线性空间V 中至少有V ,{0},()V σ,1(0)σ-四个不变子空间, 然后再设法去找其他的不变子空间.结束语本文在一个线性变换的所有不变子空间等知识具备的条件下,借助一定的数学思想方法,探讨与研究了一个线性变换的所有不变子空间,通过一些具体事例的求解,归纳、总结了求解线性变换的所有不变子空间的方法. 由于学习知识的有限,对求解线性变换的所有不变子空间的方法可能不够系统与全面,在以后的学习中我会继续加强对相关知识的学习与总结, 进而进一步加深对相关理论知识的理解.。
最近想明白特点值、特点值到底有什么物理意义,搜到了这篇文章,共享一下。
来源:孙哲的日记[1. 特点的数学意义]咱们先考察一种线性转变,例如x,y坐标系的椭圆方程能够写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换。
咱们能够把原坐标系的(x,y)乘以一个矩阵,取得一个新的(x',y')的表示形式,写为算子的形式确实是(x,y)*M=(x',y')。
那个地址的矩阵M代表一种线性变换:拉伸,平移,旋转。
那么,有无什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说,有无如此的矢量b,使得矩阵A*b如此的线性变换相当于A在矢量b上面的投影m*b? 若是有,那么b确实是A的一个特点向量,m确实是对应的一个特点值。
一个矩阵的特点向量能够有很多个。
特点值能够用特点方程求出,特点向量能够有特点值对应的方程组通解求出,反过来也一样。
例如,设A为3阶实对称矩阵,a1=(a,-a,1)T是Ax=0的解,a2=(a,1,-a)T是(A+E)x=0的解,a≠2,那么常数a=? 因为a1=(a,-a,1)T是Ax=0的解,说明a1=(a,-a,1)T是A的属于0的特点向量,a2=(a,1,-a)T是(A+E)x=0的解,说明a2=(a,1,-a)T是A的属于-1的特点向量。
实对称矩阵属于不同特点值的特点向量式正交的,因此a^2-a-a=0,a≠2,因此a=0。
仍是太抽象了,具体的说,求特点向量的关系,确实是把矩阵A所代表的空间,进行正交分解,使得A的向量集合能够表示为每一个向量a在各个特点向量上面的投影长度。
例如A是m*n的矩阵,n>m,那么特点向量确实是m个(因为秩最大是m),n个行向量在每一个特点向量E上面有投影,其特点值v确实是权重。
那么每一个行向量此刻就能够够写为Vn=(E1*v1n,E2*v2n...Em*vmn),矩阵变成了方阵。