高等代数线性变换分解
- 格式:ppt
- 大小:866.50 KB
- 文档页数:57
第 7 章线性变换7.1 知识点归纳与要点解析一.线性变换的概念与判别1. 线性变换的定义数域P 上的线性空间 V 的一个变换称为线性变换, 如果对 V中任意的元素,和数域 P 中的任意数k ,都有:,kk。
注: V 的线性变换就是其保持向量的加法与数量乘法的变换。
2. 线性变换的判别设为数域 P 上线性空间 V 的一个变换,那么:为 V 的线性变换k l k l , , V , k,l P3. 线性变换的性质设 V 是数域 P 上的线性空间,为 V 的线性变换,1 ,2 ,, s ,V 。
性质 1.0 0,;性质 2. 若 1 , 2 , , s 线性相关,那么1,2 ,,s也线性相关。
性质 3. 设线性变换为单射,如果 1 , 2 ,, s 线性无关, 那么1 ,2,,s也线性无关。
注: 设 V 是数域 P 上的线性空间,1,2 ,, m,1,2,, s 是 V 中的两个向量组,如果:1 c111c122 c1ss2c211c222c2ssmcm1 1cm22cms s记:c11c21cm11, 2 ,, m1, 2 ,c12c22 cm2, sc1sc2scms于是,若 dim Vn , 1, 2 , ,n 是 V 的一组基, 是 V 的线性变换, 1 , 2 , , m 是V 中任意一组向量,如果:1 b111b12 2b1n n2b 21 1 b 22 2 b 2 n nmbm11bm22bmnn记:1 ,2 ,, m1 ,2 m那么:b11b21cm11, 2 ,, m1, 2 ,b12 b22 cm2, nb1nb2ncmnb11b21cm1设 Bb 12b 22c m2, 1 ,2 ,,m 是矩阵B 的列向量组,如果i , i ,, i 是12rb1n b2n cmn1 , 2,, m 的 一 个 极 大 线 性 无 关 组 , 那 么i 1 ,i 2 i r就 是1,2m 的一个极大线性无关组,因此向量组1,2m的秩等于秩B 。
八.线性变换1.(中国科学院2006)若α为一实数,试计算11lim nn n nαα→+∞⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭。
解令11n A nαα⎛⎫⎪= ⎪ ⎪- ⎪⎝⎭,容易求得A 的两个特征值为1,1i i n n αα+-,相应的特征向量为1,1i i ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭。
令11i P i ⎛⎫= ⎪⎝⎭,则1111112i i P i i --⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,使得11001i n A P P i n αα-⎛⎫+ ⎪= ⎪ ⎪-⎪⎝⎭,1(1)00(1)n nn i n A P P i n αα-⎛⎫+ ⎪=⎪ ⎪- ⎪⎝⎭。
注意1(1)1lim lim in in in n n i i e n ααααα→∞→∞⎡⎤⎛⎫⎢⎥+=+= ⎪⎢⎥⎝⎭⎢⎥⎣⎦,(1)lim n i n i e nαα-→∞-=,所以11011120lim ini n i i e A i i e αα-→∞-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭cos sin 1sin cos 2i ii i iii i e e ie ie ie ie e e αααααααααααα----⎛⎫+-+⎛⎫== ⎪ ⎪--+⎝⎭⎝⎭。
2.(华南理工大学2006)设()n V M F =表示数域F 上n 阶全体矩阵的向量空间。
定义:(),()T n A A A M F σ=∀∈。
(1)证明:σ是线性变换;(2)求σ的全部特征子空间;(3)证明:σ可对角化。
证明(1),(),n A B M F k F ∀∈∀∈,有()()()()T T T A B A B A B A B σσσ+=+=+=+,()()()T T kA kA kA k A σσ===,所以σ是线性变换;(2)设λ是σ的特征值,A 为对应于λ的特征向量(某个非零矩阵),则()A A σλ=,22()()T T A A A A σλ===,于是21λ=,得1λ=±。
⾼等代数7线性变换⾼等代数7 线性变换⽬录线性变换的定义线性空间V到⾃⾝的映射通常称为V的⼀个变换。
定义线性空间V的⼀个变换A称为线性变换,如果对于V中任意的元素α,β和数域P中的任意数k都有A(α+β)=A(α)+A(β)A(kα)+k A(α)线性变换A保持向量的加法和数量乘法。
恒等变换、单位变换 E(α)=α (α∈V)零变换0 0(α)=0 (α∈V)数乘变换设V是数域P上的线性空间,k是数域P上的某个数,定义V的变换:α→kα,α∈V这是⼀个线性变换,称为由数k决定的数乘变换。
简单性质1. 线性空间V的⼀个线性变换A,则A(0)=0,A(−a)=−A(a)2. 线性变换保持线性组合不变β=k1α1+k2α2+⋯+k rαr A(β)=k1A(α1)+k2A(α2)+⋯+k r A(αr)3. 线性变换把线性相关的向量组变成线性相关的向量组。
线性变换的运算线性变换作为映射的特殊情形可以定义乘法运算乘法设A,B是线性空间V上的两个线性变换,它们的乘积AB为(AB)(α)=A(B(α)) (α∈V)线性变换的乘积也是线性变换。
适合结合律 (AB)C=A(BC)⼀般是不可交换的单位变换E EA=AE=A加法设A,B是线性空间V上的两个线性变换,它们的和A+B为(A+B)(α)=A(α)+B(α) (α∈V)线性变换的和还是线性变换交换律 A+B=B+A结合律 (A+B)+C=A+(B+C)零变换0 A+0=A负变换 A+(−A)=0 .负变换也是线性的。
线性变换乘法对加法具有左右分配律A(B+C)=AB+AC(B+C)A=BA+CA数量乘法数域P中的数与线性变换的数量乘法为k A=KA(kl)A=k(l A)(k+l)A=k A+l Ak(A+B)=k A+k B1A=A线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上的⼀个线性空间逆变换V上的变换A称为可逆的,如果有V的变换B存在,使 AB=BA=E这时,变换A称为A的逆变换,称为A−1如果线性变换A是可逆的,那么它的逆变换A−1也是线性变换。
高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。
二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。
只要取一组足够好的基,就可以得到足够好的矩阵。
某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。
三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。