第十一章向量自回归模型和向量误差修正模型
- 格式:ppt
- 大小:5.48 MB
- 文档页数:100
向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
一、EG两步检验法1、数据收集(1)验证数据是否具有平稳性2、计量模型和实证结果分析(1)单位根检验在利用OLS对计量经济模型进行估计时,若时间序列为非平稳序列,则容易产生伪回归,从而使模型不能真实地反映解释变量和被解释变量的关系。
因此,为防止伪回归的出现,先对变量的时间序列进行平稳性检验。
其方法如下:ADF检验法(2)协整检验协整概念是20世纪80年代由恩格尔(Engle)和格兰杰(Granger)提出的。
a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法第一步,协整回归(1)用“普通最小二乘法OLS”估计出残差的计算公式第二步,检验残差的单整性,及是否是平稳序列3、误差修正模型4、Granger因果关系检验二、约翰森(Johansen)检验法1、数据选择及预处理(1)为消除可能存在的异方差,对数据进行自然对数变换2、平稳性检验(1)运用增广基迪-富勒检验(ADF检验)对各指标时间序列的平稳性进行单位根检验(unit root test)3、协整检验(1)协整分析的基本思想:尽管两个或两个以上的变量每个都是不平衡的,但它们的线性组合可以互相抵消趋势项的影响,从而成为一个平稳的组合,因而人们可以研究经济变量间的长期均衡关系。
(2)常用方法:a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法(3)检验之前,根据Akaike信息准则和SC准则,确定VAR模型(向量自回归模型)滞后期(为2)。
4、格兰杰因果关系检验(1)为避免伪回归,对文中所研究的变量做格兰杰因果关系检验。
格兰杰因果(Granger causal-ity)是指,Y称为X的“格兰杰原因”,当且仅当如果利用Y 的过去值比不用它时能够更好地预测X。
简言之,如果标量Y能够有效的帮助预测X,那么就称Y为X的“格兰杰原因”。
5、VAR模型及脉冲响应分析(1)如果格兰杰因果关系检验存在,也只是说明和验证了变量之间的因果关系,具体的影响过程和方向还可以借助脉冲响应分析函数(Impulse Response Functions)。