计量经济学 第九章 向量自回归和误差修正模型.
- 格式:ppt
- 大小:436.00 KB
- 文档页数:57
误差修正模型的原理和应用1. 引言误差修正模型(Error Correction Model,简称ECM)是一种常用的时间序列分析模型,用于解释和预测变量之间的长期关系。
它具有非常广泛的应用领域,包括经济学、金融学、营销学等。
2. 原理误差修正模型是基于向量自回归模型(Vector Autoregressive Model,简称VAR)发展而来的。
与VAR模型不同的是,ECM模型引入了误差修正项,用于补偿长期均衡之间的偏差。
其基本原理可以分为以下几个步骤:•步骤一:首先,建立一个包含所有相关变量的VAR模型。
•步骤二:对VAR模型进行稳定性检验,确保模型的可靠性。
•步骤三:检验模型是否存在长期均衡关系。
如果存在长期均衡关系,则可以使用误差修正项来补偿该关系中的偏差。
•步骤四:估计误差修正模型的系数,并进行统计检验。
•步骤五:对误差修正模型进行模型诊断,检验模型拟合度和模型性能。
•步骤六:使用误差修正模型进行预测和分析。
在实际应用中,误差修正模型的原理非常清晰和直观,使得它成为许多时间序列分析的首选模型之一。
3. 应用误差修正模型在许多领域中都有广泛的应用,下面分别介绍它在经济学和金融学中的应用:### 3.1 经济学中的应用误差修正模型在经济学中有很多应用,例如: - 用于分析经济周期的波动和预测 - 用于估计和预测国内生产总值(Gross Domestic Product,GDP) - 用于研究货币供应量和利率之间的长期关系 - 用于分析和预测通货膨胀率和失业率的关系误差修正模型可以通过建立一系列相互依赖的变量之间的模型来研究经济系统的动态特征,提供对经济的深入理解和更准确的预测。
### 3.2 金融学中的应用误差修正模型在金融学中也具有重要的应用价值,例如: - 用于分析和预测股票价格的长期趋势 - 用于研究汇率和利率之间的关系 - 用于估计和预测金融资产的价格和波动性 - 用于分析和预测市场供求关系和价格发现过程金融市场的复杂性和波动性使得误差修正模型成为研究金融领域的重要工具,帮助投资者和决策者做出更明智的决策。
面板数据、格兰杰因果关系、向量自回归和向量误差修正模型(2011-06-13 11:43:22)标签: 分类: 工作篇校园面板数据的计量方法1.什么是面板数据,面板数据,panel data,也称时间序列截面数据,time series and cross section data,或混合数据,pool data,。
面板数据是截面数据与时间序列综合起来的一种数据资源~是同时在时间和截面空间上取得的二维数据。
如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8,单位亿元,。
这就是截面数据~在一个时间点处切开~看各个城市的不同就是截面数据。
如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12,单位亿元,。
这就是时间序列~选一个城市~看各个样本时间点的不同就是时间序列。
如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12,上海市分别为9、10、11、12、13,天津市分别为5、6、7、8、9,重庆市分别为7、8、9、10、11,单位亿元,。
这就是面板数据。
2.面板数据的计量方法利用面板数据建立模型的好处是:,1,由于观测值的增多~可以增加估计量的抽样精度。
,2,对于固定效应模型能得到参数的一致估计量~甚至有效估计量。
,3,面板数据建模比单截面数据建模可以获得更多的动态信息。
例如1990-2000 年30 个省份的农业总产值数据。
固定在某一年份上~它是由30 个农业总产值数字组成的截面数据,固定在某一省份上~它是由11 年农业总产值数据组成的一个时间序列。
面板数据由30 个个体组成。
共有330 个观测值。
面板数据模型的选择通常有三种形式:混合估计模型、固定效应模型和随机效应模型。
这三类模型的差异主要表现在系数、截距以及随机误差的假设不同。
第一种是混合估计模型,Pooled Regression Model,。
向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。