向量误差修正模型
- 格式:ppt
- 大小:588.51 KB
- 文档页数:3
Stata误差修正模型命令简介误差修正模型(Error Correction Model,ECM)是一种用于描述时间序列数据之间长期和短期关系的经济模型。
它是自回归移动平均模型(ARMA)和协整关系的结合,可以用于分析变量之间的长期均衡关系和短期调整速度。
Stata是一款功能强大的统计分析软件,提供了许多用于估计和分析误差修正模型的命令。
本文将介绍Stata中常用的误差修正模型命令及其使用方法。
命令介绍vecintrovecintro命令用于估计向量自回归(Vector Autoregression,VAR)模型,并进行协整检验。
在估计VAR之前,我们需要先检验变量之间是否存在协整关系。
vecintro命令可以帮助我们进行协整检验并选择适当的滞后阶数。
使用示例:vecintro y x1 x2, lags(1/4)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4。
vecrankvecrank命令用于估计向量错误修正模型(Vector Error Correction Model,VECM)。
VECM是一种描述协整关系和短期调整速度的模型。
使用示例:vecrank y x1 x2, lags(1/4) rank(2)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4,rank(2)表示选择协整关系的阶数为2。
vecvec命令用于估计向量错误修正模型,并进行残差诊断和模型拟合优度检验。
使用示例:vec y x1 x2, lags(1/4) rank(2)其中,y表示因变量,x1和x2表示自变量。
lags(1/4)表示选择滞后阶数为1至4,rank(2)表示选择协整关系的阶数为2。
常用参数lags在估计误差修正模型时,我们需要选择合适的滞后阶数。
Stata中的误差修正模型命令通常都提供了lags参数来指定滞后阶数范围。
使用示例:vec y x, lags(1/4)上述示例中的lags参数指定了滞后阶数范围为1至4。
R语言向量误差修正模型(VECM)是一种用于多变量时间序列建模的方法,它可以帮助我们理解变量之间的长期和短期关系。
在本文中,我将深入探讨VECM模型的系数解读,并结合个人观点和理解,为您解析这一主题。
1. VECM模型简介VECM模型是向量自回归模型(VAR)的扩展,它在处理非平稳时间序列数据时具有很高的适用性。
与VAR模型不同的是,VECM模型考虑了变量之间的协整关系,从而可以分离长期均衡关系和短期动态调整过程。
2. VECM模型系数解读在VECM模型中,系数的解读非常重要。
我们需要关注模型的截距项和趋势项,它们代表了长期均衡关系的影响。
我们需要关注误差修正项的系数,它代表了模型中的短期调整过程。
通过这些系数的解读,我们可以更好地理解变量之间的动态关系。
3. 长期均衡关系解读当我们在VECM模型中发现存在协整关系时,我们可以通过截距项和趋势项来解读长期均衡关系。
截距项代表了长期均衡关系的水平,而趋势项则代表了长期均衡关系的变化趋势。
通过对这些系数的解读,我们可以揭示变量之间的长期关系。
4. 短期动态调整解读除了长期均衡关系,VECM模型还可以帮助我们理解变量之间的短期动态调整过程。
误差修正项的系数代表了短期动态调整的速度和方向,通过对这些系数的解读,我们可以了解变量之间的短期动态关系。
5. 个人观点和理解在我看来,VECM模型的系数解读是非常重要的。
通过深入理解模型系数的含义,我们可以更好地把握多变量时间序列数据的动态特性,从而做出更准确的预测和分析。
我认为在解读系数时,需要结合实际问题的背景和领域知识,以便更好地理解变量之间的关系。
总结与回顾通过本文的阐述,我们对VECM模型的系数解读有了更深入的理解。
从长期均衡关系到短期动态调整,每个系数都承载着丰富的信息,帮助我们理解变量之间的复杂关系。
在实际应用中,我们需要综合运用VECM模型的系数解读和领域知识,从而做出准确的预测和分析。
通过本文的讨论,相信您已经对r语言向量误差修正模型系数解读有了更深入的了解。
向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
一、EG两步检验法1、数据收集(1)验证数据是否具有平稳性2、计量模型和实证结果分析(1)单位根检验在利用OLS对计量经济模型进行估计时,若时间序列为非平稳序列,则容易产生伪回归,从而使模型不能真实地反映解释变量和被解释变量的关系。
因此,为防止伪回归的出现,先对变量的时间序列进行平稳性检验。
其方法如下:ADF检验法(2)协整检验协整概念是20世纪80年代由恩格尔(Engle)和格兰杰(Granger)提出的。
a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法第一步,协整回归(1)用“普通最小二乘法OLS”估计出残差的计算公式第二步,检验残差的单整性,及是否是平稳序列3、误差修正模型4、Granger因果关系检验二、约翰森(Johansen)检验法1、数据选择及预处理(1)为消除可能存在的异方差,对数据进行自然对数变换2、平稳性检验(1)运用增广基迪-富勒检验(ADF检验)对各指标时间序列的平稳性进行单位根检验(unit root test)3、协整检验(1)协整分析的基本思想:尽管两个或两个以上的变量每个都是不平衡的,但它们的线性组合可以互相抵消趋势项的影响,从而成为一个平稳的组合,因而人们可以研究经济变量间的长期均衡关系。
(2)常用方法:a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法(3)检验之前,根据Akaike信息准则和SC准则,确定VAR模型(向量自回归模型)滞后期(为2)。
4、格兰杰因果关系检验(1)为避免伪回归,对文中所研究的变量做格兰杰因果关系检验。
格兰杰因果(Granger causal-ity)是指,Y称为X的“格兰杰原因”,当且仅当如果利用Y 的过去值比不用它时能够更好地预测X。
简言之,如果标量Y能够有效的帮助预测X,那么就称Y为X的“格兰杰原因”。
5、VAR模型及脉冲响应分析(1)如果格兰杰因果关系检验存在,也只是说明和验证了变量之间的因果关系,具体的影响过程和方向还可以借助脉冲响应分析函数(Impulse Response Functions)。
误差修正模型公式
误差修正模型(Error Correction Model, ECM)是一个著名的非平稳时间序列分析方法,其基本思想是建立一个包括误差修正项的向量自回归模型(Vector Autoregressive Model, VAR),以捕捉长期和短期之间的非平稳关系。
其公式如下:
$∆y_t = α_0 + β_0 y_{t-1} + Σ_{i=1}^{p-1} β_i ∆y_{t-i} + γ_1 EC_{t-1} + Σ_{i=1}^{p-1} γ_{i+1} EC_{t-i} + ɛ_t$
其中,$y_t$ 表示要研究的非平稳时间序列,$EC_t$ 表示误差修正项,$p$ 表示自回归项的阶数,$α_0$、$β_0$,$β_i$ 和 $γ_i$ 表示回归系数,$ɛ_t$ 表示误差。
误差修正项可以看作是一个调整参数,用来使得模型在长期和短期之间保持平衡。
当向量误差达到稳态时,误差修正项为0。
而在误差修正模型中,模型的原始变量和误差修正项是彼此相关的,从而使得该模型可以同时捕捉短期和长期非平稳关系的特点。
当我们使用 ECM 模型进行非平稳时间序列数据的分析时,首先需要检验变量之间是否存在协整关系,然后再进行特征提取和模型建立。
获得模型后,我们可以利用模型进行预测和分析,以帮助我们更好地理解非平稳时间序列数据的动态特性和规律。
向量误差修正一 模型的概述1 VEC 模型向量误差修正模型VEC 是协整与误差修正模型的结合。
只要变量之间存在协整关系,就可以由自回归分布滞后模型导出误差修正模型,即VEC 模型是建立在协整基础上的V AR 模型,主要应用于具有协整关系的非平稳时间序列建模。
V AR 模型的表达式为:11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y ecm y x αΓH ε式中t y 为k 维内生变量列向量,其各分量都是非平稳的()1I 变量;t x 是d 维外生向量,代表趋势项、常数项等确定性项;每个方程都是一个误差修正模型,1t -ecm 是误差修正项向量,反映变量之间的长期均衡关系;系数矩阵α反映了变量之间偏离长期均衡状态时,将其调整到均衡状态的调整速度;解释变量的差分项的系数反映各变量的短期波动对作为被解释变量的短期变化的影响;t ε是k 维扰动向量。
2 诊断检验2.1 Johansen 协整检验Johansen 协整检验基于回归系数进行检验,其基本思想为: 对()VAR p 模型11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y ecm y x αΓH ε两端减去1t -y 再变形可以得到11=1=+++ =1, 2,, p t t i t i t t i t T ---∆∆∑y y y x ∏ΓH ε其中的,t ∆y t j -∆y ()=1,2,j p 都变为()0I 变量构成的向量,只要1t -∏y 是()0I 的向量,即1t -y 的各分量之间具有协整关系,就能保证t ∆y 是平稳过程,而这主要依赖于矩阵∏的秩。
设∏的秩为r ,则0<<r k 时才有r 个协整组合,其余k r -个关系仍为()1I 关系。
这种情况下,∏可以分解为两个k r ⨯阶矩阵α和β的乘积:=∏αβ'其中()()=,=r r r r αβ,则模型变为1'1=1=+++ =1, 2, , p t t i t i t t i t T ---∆∆∑y y y x αβΓH ε式中'1t -βy 为一个()0I 向量,β为协整向量矩阵,其每一列所表示的1t -y 的各分量线性组合都是一种协整形式,矩阵β决定了1t -y 的各分量之间协整向量的个数(r )与形式。