第09章 向量自回归和向量误差修正模型
- 格式:ppt
- 大小:1.81 MB
- 文档页数:213
面板数据、格兰杰因果关系、向量自回归和向量误差修正模型(2011-06-13 11:43:22)标签: 分类: 工作篇校园面板数据的计量方法1.什么是面板数据,面板数据,panel data,也称时间序列截面数据,time series and cross section data,或混合数据,pool data,。
面板数据是截面数据与时间序列综合起来的一种数据资源~是同时在时间和截面空间上取得的二维数据。
如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8,单位亿元,。
这就是截面数据~在一个时间点处切开~看各个城市的不同就是截面数据。
如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12,单位亿元,。
这就是时间序列~选一个城市~看各个样本时间点的不同就是时间序列。
如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12,上海市分别为9、10、11、12、13,天津市分别为5、6、7、8、9,重庆市分别为7、8、9、10、11,单位亿元,。
这就是面板数据。
2.面板数据的计量方法利用面板数据建立模型的好处是:,1,由于观测值的增多~可以增加估计量的抽样精度。
,2,对于固定效应模型能得到参数的一致估计量~甚至有效估计量。
,3,面板数据建模比单截面数据建模可以获得更多的动态信息。
例如1990-2000 年30 个省份的农业总产值数据。
固定在某一年份上~它是由30 个农业总产值数字组成的截面数据,固定在某一省份上~它是由11 年农业总产值数据组成的一个时间序列。
面板数据由30 个个体组成。
共有330 个观测值。
面板数据模型的选择通常有三种形式:混合估计模型、固定效应模型和随机效应模型。
这三类模型的差异主要表现在系数、截距以及随机误差的假设不同。
第一种是混合估计模型,Pooled Regression Model,。
向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
一、EG两步检验法1、数据收集(1)验证数据是否具有平稳性2、计量模型和实证结果分析(1)单位根检验在利用OLS对计量经济模型进行估计时,若时间序列为非平稳序列,则容易产生伪回归,从而使模型不能真实地反映解释变量和被解释变量的关系。
因此,为防止伪回归的出现,先对变量的时间序列进行平稳性检验。
其方法如下:ADF检验法(2)协整检验协整概念是20世纪80年代由恩格尔(Engle)和格兰杰(Granger)提出的。
a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法第一步,协整回归(1)用“普通最小二乘法OLS”估计出残差的计算公式第二步,检验残差的单整性,及是否是平稳序列3、误差修正模型4、Granger因果关系检验二、约翰森(Johansen)检验法1、数据选择及预处理(1)为消除可能存在的异方差,对数据进行自然对数变换2、平稳性检验(1)运用增广基迪-富勒检验(ADF检验)对各指标时间序列的平稳性进行单位根检验(unit root test)3、协整检验(1)协整分析的基本思想:尽管两个或两个以上的变量每个都是不平衡的,但它们的线性组合可以互相抵消趋势项的影响,从而成为一个平稳的组合,因而人们可以研究经济变量间的长期均衡关系。
(2)常用方法:a、EG(EngleGranger)两步检验法b、约翰森(Johansen)检验法(3)检验之前,根据Akaike信息准则和SC准则,确定VAR模型(向量自回归模型)滞后期(为2)。
4、格兰杰因果关系检验(1)为避免伪回归,对文中所研究的变量做格兰杰因果关系检验。
格兰杰因果(Granger causal-ity)是指,Y称为X的“格兰杰原因”,当且仅当如果利用Y 的过去值比不用它时能够更好地预测X。
简言之,如果标量Y能够有效的帮助预测X,那么就称Y为X的“格兰杰原因”。
5、VAR模型及脉冲响应分析(1)如果格兰杰因果关系检验存在,也只是说明和验证了变量之间的因果关系,具体的影响过程和方向还可以借助脉冲响应分析函数(Impulse Response Functions)。
误差修正模型公式
误差修正模型(Error Correction Model, ECM)是一个著名的非平稳时间序列分析方法,其基本思想是建立一个包括误差修正项的向量自回归模型(Vector Autoregressive Model, VAR),以捕捉长期和短期之间的非平稳关系。
其公式如下:
$∆y_t = α_0 + β_0 y_{t-1} + Σ_{i=1}^{p-1} β_i ∆y_{t-i} + γ_1 EC_{t-1} + Σ_{i=1}^{p-1} γ_{i+1} EC_{t-i} + ɛ_t$
其中,$y_t$ 表示要研究的非平稳时间序列,$EC_t$ 表示误差修正项,$p$ 表示自回归项的阶数,$α_0$、$β_0$,$β_i$ 和 $γ_i$ 表示回归系数,$ɛ_t$ 表示误差。
误差修正项可以看作是一个调整参数,用来使得模型在长期和短期之间保持平衡。
当向量误差达到稳态时,误差修正项为0。
而在误差修正模型中,模型的原始变量和误差修正项是彼此相关的,从而使得该模型可以同时捕捉短期和长期非平稳关系的特点。
当我们使用 ECM 模型进行非平稳时间序列数据的分析时,首先需要检验变量之间是否存在协整关系,然后再进行特征提取和模型建立。
获得模型后,我们可以利用模型进行预测和分析,以帮助我们更好地理解非平稳时间序列数据的动态特性和规律。
时序预测中的多变量预测方法分享时序预测是指根据过去的数据和趋势,对未来的数值或事件进行预测。
多变量预测则是指在预测过程中考虑多个变量之间的关系。
在实际应用中,时序预测的方法和技术层出不穷,其中多变量预测方法是一种常见且有效的预测手段。
本文将分享一些在时序预测中常用的多变量预测方法,以期为相关研究和实践提供参考和借鉴。
一、向量自回归模型(VAR)向量自回归模型(Vector Autoregression, VAR)是一种常用的多变量时序预测方法。
它假设各个变量之间存在相互影响和依赖关系,通过构建一个包含所有变量的向量自回归模型,从而实现对未来数值的预测。
VAR模型的优点之一在于能够捕捉不同变量之间的相互作用,因此在需要考虑多个相关变量的预测问题中往往能够取得较好的效果。
同时,VAR模型也有其局限性,比如在变量较多、相关性较强的情况下,模型的参数估计和预测结果可能会变得复杂和不稳定。
二、脉冲响应函数分析脉冲响应函数分析是一种用于衡量多变量时序预测模型中变量之间影响和关联关系的方法。
通过脉冲响应函数分析,可以得到各个变量对其他变量的冲击响应情况,从而揭示它们之间的动态关系。
在实际应用中,脉冲响应函数分析可以帮助研究人员理解多变量时序数据中不同变量之间的因果关系,为预测模型的构建和优化提供重要的参考依据。
三、卡尔曼滤波器卡尔曼滤波器是一种基于状态空间模型的多变量时序预测方法。
它通过不断地观测和估计系统的状态,实现对未来状态的预测。
卡尔曼滤波器在工程控制、金融领域等多个领域有着广泛的应用,尤其在需要对系统状态进行实时跟踪和预测的情境下表现突出。
卡尔曼滤波器的核心思想是通过递归地更新状态估计值和协方差矩阵,不断提高预测的准确性和稳定性。
然而,卡尔曼滤波器也有一些前提假设,比如线性动态系统和观测方程的高斯噪声等,需要在实际应用中加以考虑。
四、向量误差修正模型(VECM)向量误差修正模型(Vector Error Correction Model, VECM)是一种专门用于处理多个协整关系变量的时序预测方法。