VAR模型与向量VECM模型
- 格式:doc
- 大小:2.15 MB
- 文档页数:22
R语言向量误差修正模型(VECM)是一种用于多变量时间序列建模的方法,它可以帮助我们理解变量之间的长期和短期关系。
在本文中,我将深入探讨VECM模型的系数解读,并结合个人观点和理解,为您解析这一主题。
1. VECM模型简介VECM模型是向量自回归模型(VAR)的扩展,它在处理非平稳时间序列数据时具有很高的适用性。
与VAR模型不同的是,VECM模型考虑了变量之间的协整关系,从而可以分离长期均衡关系和短期动态调整过程。
2. VECM模型系数解读在VECM模型中,系数的解读非常重要。
我们需要关注模型的截距项和趋势项,它们代表了长期均衡关系的影响。
我们需要关注误差修正项的系数,它代表了模型中的短期调整过程。
通过这些系数的解读,我们可以更好地理解变量之间的动态关系。
3. 长期均衡关系解读当我们在VECM模型中发现存在协整关系时,我们可以通过截距项和趋势项来解读长期均衡关系。
截距项代表了长期均衡关系的水平,而趋势项则代表了长期均衡关系的变化趋势。
通过对这些系数的解读,我们可以揭示变量之间的长期关系。
4. 短期动态调整解读除了长期均衡关系,VECM模型还可以帮助我们理解变量之间的短期动态调整过程。
误差修正项的系数代表了短期动态调整的速度和方向,通过对这些系数的解读,我们可以了解变量之间的短期动态关系。
5. 个人观点和理解在我看来,VECM模型的系数解读是非常重要的。
通过深入理解模型系数的含义,我们可以更好地把握多变量时间序列数据的动态特性,从而做出更准确的预测和分析。
我认为在解读系数时,需要结合实际问题的背景和领域知识,以便更好地理解变量之间的关系。
总结与回顾通过本文的阐述,我们对VECM模型的系数解读有了更深入的理解。
从长期均衡关系到短期动态调整,每个系数都承载着丰富的信息,帮助我们理解变量之间的复杂关系。
在实际应用中,我们需要综合运用VECM模型的系数解读和领域知识,从而做出准确的预测和分析。
通过本文的讨论,相信您已经对r语言向量误差修正模型系数解读有了更深入的了解。
向量自回归模型(VAR )与向量误差修正模型(VEC )向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (15.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (15.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (15. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式. 如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
时序预测中的多变量预测方法分享时序预测是指根据过去的数据和趋势,对未来的数值或事件进行预测。
多变量预测则是指在预测过程中考虑多个变量之间的关系。
在实际应用中,时序预测的方法和技术层出不穷,其中多变量预测方法是一种常见且有效的预测手段。
本文将分享一些在时序预测中常用的多变量预测方法,以期为相关研究和实践提供参考和借鉴。
一、向量自回归模型(VAR)向量自回归模型(Vector Autoregression, VAR)是一种常用的多变量时序预测方法。
它假设各个变量之间存在相互影响和依赖关系,通过构建一个包含所有变量的向量自回归模型,从而实现对未来数值的预测。
VAR模型的优点之一在于能够捕捉不同变量之间的相互作用,因此在需要考虑多个相关变量的预测问题中往往能够取得较好的效果。
同时,VAR模型也有其局限性,比如在变量较多、相关性较强的情况下,模型的参数估计和预测结果可能会变得复杂和不稳定。
二、脉冲响应函数分析脉冲响应函数分析是一种用于衡量多变量时序预测模型中变量之间影响和关联关系的方法。
通过脉冲响应函数分析,可以得到各个变量对其他变量的冲击响应情况,从而揭示它们之间的动态关系。
在实际应用中,脉冲响应函数分析可以帮助研究人员理解多变量时序数据中不同变量之间的因果关系,为预测模型的构建和优化提供重要的参考依据。
三、卡尔曼滤波器卡尔曼滤波器是一种基于状态空间模型的多变量时序预测方法。
它通过不断地观测和估计系统的状态,实现对未来状态的预测。
卡尔曼滤波器在工程控制、金融领域等多个领域有着广泛的应用,尤其在需要对系统状态进行实时跟踪和预测的情境下表现突出。
卡尔曼滤波器的核心思想是通过递归地更新状态估计值和协方差矩阵,不断提高预测的准确性和稳定性。
然而,卡尔曼滤波器也有一些前提假设,比如线性动态系统和观测方程的高斯噪声等,需要在实际应用中加以考虑。
四、向量误差修正模型(VECM)向量误差修正模型(Vector Error Correction Model, VECM)是一种专门用于处理多个协整关系变量的时序预测方法。
向量自回归模型(VAR )与向量误差修正模型(VEC )向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (15.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (15.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (15. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式. 如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
时序预测中的多变量预测方法分享一、介绍时序预测是指根据已有的历史数据,利用统计学或机器学习方法来预测未来一段时间内的数据变化趋势。
在实际应用中,往往需要考虑多个变量之间的相互影响和关联,因此多变量时序预测成为了一个重要的研究领域。
在本文中,将分享一些常用的多变量时序预测方法,并探讨它们的特点和适用场景。
二、向量自回归模型(VAR)VAR模型是一种经典的多变量时序预测方法,它假设各个变量之间是相互影响的。
具体来说,VAR模型假设当前时刻各个变量的取值是过去几个时刻所有变量的线性组合。
通过对历史数据的拟合,可以得到VAR模型的参数,然后利用这些参数来进行未来时序的预测。
VAR模型的优点在于它考虑了变量之间的相互关系,能够更准确地捕捉变量之间的动态变化。
但是,VAR模型也有一些局限性,比如对变量之间的滞后效应的建模需要事先确定滞后阶数,而这个阶数的选择往往需要一定的经验和技巧。
三、脉冲响应函数分析脉冲响应函数分析是一种用来研究VAR模型中各个变量之间的动态影响的方法。
它通过对VAR模型的参数进行分析,得到每个变量对其他变量的冲击响应函数。
这些响应函数可以帮助我们更好地理解各个变量之间的相互作用,从而指导我们进行更准确的时序预测。
脉冲响应函数分析的优点在于它可以帮助我们理解VAR模型中各个变量之间的动态关系,预测结果更加可解释。
但是,脉冲响应函数分析也需要对VAR模型有一定的了解,而且需要大量的历史数据来进行参数估计,对数据的要求比较高。
四、向量误差修正模型(VECM)VECM模型是对VAR模型的一种扩展,它在VAR模型的基础上引入了误差修正项。
这样可以更好地捕捉变量之间的长期均衡关系,也更适用于非平稳时间序列数据的建模和预测。
VECM模型的优点在于它考虑了变量之间的长期均衡关系,对非平稳时间序列数据的建模效果更好。
但是,VECM模型也需要事先确定一些参数,比如滞后阶数和误差修正项的阶数,这需要一定的经验和技巧。
V AR模型、协整和VEC模型1.V AR〔向量自回归〕模型定义2.V AR模型的特点3. V AR模型稳定的条件4. V AR模型的分解5. V AR模型滞后期的选择6. 脉冲响应函数和方差分解7.格兰杰〔Granger〕非因果性检验8. V AR模型与协整9. V AR模型中协整向量的估计与检验10. 案例分析1980年Sims 提出向量自回归模型〔vector autoregressive model 〕。
这种模型采用多方程联立的形式,它不以经济理论为根底。
在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进展回归,从而估计全部内生变量的动态关系。
1.V AR 〔向量自回归〕模型定义以两个变量y 1t ,y 2t 滞后1期的V AR 模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2t其中u 1 t , u 2 t ~ IID (0, σ2), Cov(u 1 t , u 2 t ) = 0。
写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21设Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 如此,Y t = c + ∏1Y t -1 + u t(1.3)含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t , u t ~ IID (0, Ω)其中,Y t = (y 1, t y 2, t …y N , t )',c = (c 1c 2 … )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN jN jN j N jj j N jj ..2.1.2.22.21.1.12.11πππππππππ,j = 1, 2, …, ku t = (u 1 t u 2,t … u Nt )',不同方程对应的随机误差项之间可能存在相关。
第7章 向量自回归模型(VAR )与向量误差修正模型(VEC )§ 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
这时,t u 是k 维白噪声向量序列,由于t u 没有结构性经济含义,也被称为冲击向量;()()0,1,2,...t t j t t j Cov u x E u x j --''===,即t u 与t x 及各滞后期不相关。
则称上述模型为非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型。
2、受限制性VAR 模型,或简化式受限制性VAR 模型如果将12(...)t t t kt y y y y '=做为一k 维内生的随机时间序列,受d 维外生的时间序列12(..)t t t dt x x x x '= 影响(限制),则VAR 模型为1122...t t t p t p t t y A y A y A y Dx u ---=+++++,1,2,...,t T = (7.1.4) 或利用滞后算子表示成(),1,2,...,t t t A L y Dx u t T =-+= (7. 1. 5)其中: 111212122212.....................................d d k k kd d d d d d d D d d d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 此时称该模型为受限制性VAR 模型,简化式受限制性VAR 模型。
对于受限制性VAR 模型,可通过12(...)t t t kt y y y y '=对12(..)t t t dt x x x x '=作OLS 回归,得到残差估计ˆt t t y y y =-%,从而将t y %变换成(15.1.2)或()形式的非限制性VAR 模型,即1122...t t t p t p t y A y A y A y u ---=++++%%%%,1,2,...,t T = (7.1.6)(),1,2,...,t t A L y u t T ==% (7. 1. 7) 这说明受限制性VAR 模型可化为非限制性VAR 模型。
简化式非限制、受限制VAR 模型,皆简记为()VAR p 。
3、结构式非限制性VAR 模型如果12(...)t t t kt y y y y '=中的每一分量受其它分量当期影响, 无d 维外生的时间序列12(..)t t t dt x x x x '=影响(限制),则模型化为01122...t t t p t p t A y A y A y A y u ---=++++,1,2,...,t T = (7.1.8) 或利用滞后算子表示成(),1,2,...,t t A L y u t T == (7. 1. 9)其中: (0)(0)121(0)(0)2120(0)(0)121...1..................................1k k k k a a a a A a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,这时的2012()...p p A L A A L A L A L =---- 此时称该模型为结构式非限制性VAR 模型。
如果0A 可逆,既逆阵10A -存在,则结构式非限制性VAR 模型可化为简化式非限制性VAR 模型111101102200...t t t p t p t y A A y A A y A A y A u -------=++++,1,2,...,t T = (7.1.10)或利用滞后算子表示成10(),1,2,...,t t A L y A u t T -== (7. 1. 11)这时,其中的112101020()...p p A L I A A L A A L A A L ---=----4、结构式受限制性VAR 模型如果将12(...)t t t kt y y y y '=做为一k 维内生的随机时间序列,其中每一分量受其它分量当期影响,且还受d 维外生的时间序列12(..)t t t dt x x x x '=影响(限制),则VAR 模型为01122...t t t p t p t t A y A y A y A y Dx u ---=+++++,1,2,...,t T = (7.1.12) 或利用滞后算子表示成(),1,2,...,t t t A L y Dx u t T =-+= (7. 1. 13)此时称该模型为结构式受限制性VAR 模型。
如果0A 可逆,既逆阵10A -存在,则结构式受限制性VAR 模型可化为简化式受限制性VAR 模型11111011022000...t t t p t p t t y A A y A A y A A y A Dx A u --------=+++++,1,2,...,t T = (7.1.14)或利用滞后算子表示成1100(),1,2,...,t t t A L y A Dx A u t T --=-+= (7. 1. 15)这时,其中的112101020()...p p A L I AA L A A L A A L ---=----结构式非限制、受限制VAR 模型,皆简记为()SVAR p 。
7.1.2 简化式VAR 模型的参数估计VAR 模型参数估计, 简化式VAR 模型比较简单可采用Yule-Walker 估计、OLS 估计、极大似然估计法等进行估计,且可获得具有良好统计性质的估计量。
结构式VAR 模型参数估计比较复杂,可有两种途径:一种是化成简化式,直接估计简化式模型参数,然后再通过简化式模型参数与结构式模型参数的关系,求得结构式模型参数估计,但这存在一个问题是否可行,什么情况下可行,这与结构式模型的识别性有关。