某型飞机预警雷达结构动态特性分析
- 格式:pdf
- 大小:469.41 KB
- 文档页数:3
A320飞机气象雷达的使用故障分析及排故摘要:本文在分析气象雷达系统故障前首先到图书馆进行了资料调研,获得了大量关于气象雷达系统及故障分析的文献资料,结合空客A320手册和某航空公司运营的故障报告数据等重要资料。
总结各类文献资料完成绪论,介绍飞机气象雷达构成及显示原理,然后根据故障数据统计分析了气象雷达系统的故障情况并提出了排故方法和维护措施。
关键词:飞机气象雷达;使用故障;排除一、气象雷达系统分析气象雷达在雷达里面是一个重要的分支,经过长时间的研发已被广泛应用在了天气预报、农业等多种不同的领域。
在民航界气象雷达也同样受到了高度的重视及应用,目前的机载气象雷达不仅可以探测雷雨等天气情况,还能够探测到低空风切变等危险情况,可以为飞机的飞行做好预警工作,因此机载气象雷达系统成为了民航飞机飞行安全中不可或缺的一个重要的机载系统。
先进的民用飞机上一般都装有气象雷达,通常都将其安装在飞机的机头部位,气象雷达系统主要包括收发机、控制装置、天线驱动、天线、显示器和波导装置,还设有收发机和雷达波导开关,使其可以通过雷达系统的控制面板选择开关的置左或置右,用来选择其相对应的系统进行工作。
机载气象雷达系统一般在飞机飞行过程中不断的实时探测飞机前方航路上的危险气象区域和地面障碍物的平面显示图像信息,并且将气象数据连续迅速地用不同的颜色表示降水的密度和地形情况来反馈到驾驶员气象雷达导航显示器上,新型的气象雷达还具有探测紊流和风切变的功能,用来让驾驶员选择安全可靠的航线,可以绕开危险的区域从而保证飞机的飞行安全。
在气象雷达系统其天线扫描的区域范围内,可以探测和定位到不同类型的大气扰动和风切变的情况。
气象雷达系统随着降雨量比率变化而变化的颜色显示外界天气干扰的强度。
用不同的颜色显示将大气扰动在导航显示器上用来提示机组人员:大气扰动根据其降雨量的多少颜色分别为黑、绿、黄、红;其中洋红则代表着紊流区域在降水区域的40海里以内。
机载预警雷达概论机载预警雷达概论一、预警机在现代信息化战争中的地位和作用1. 预警机是一种装有远距离搜索雷达、数据处理、敌我识别以及通信导航、指挥控制、电子对抗等完善的电子设备,集预警、指挥、控制、通信和情报于一体,用于搜索、监视与跟踪空中和海上目标,并指挥、引导己方飞机执行作战任务的作战支援飞机[1]。
2. 预警机于第二次世界大战结束时问世,曾被用于越南战争,但直到上世纪八十年代初中东战争中的“贝卡谷地”之战,预警机创造了一边倒的军事奇迹,才受到世界军事强国的密切关注。
1982年6月6日,以色列90架战斗机在E-2C预警机的指挥下,向黎巴嫩贝卡谷地发起进攻。
E-2C预警机先敌发现前来支援的近百架叙利亚战斗机,适时干扰、遮断它们与地面指挥部的联系,以损失1架战斗机的代价,一举击落、击伤叙利亚战斗机79架和7架。
3. 预警机已成为军队信息化的重要标志,是现代战争整个作战体系的神经中枢。
1991年海湾战争期间,美国动用了27架E-2C和11架E-3预警机参战。
E-2C预警机出动1183架次,飞行4700小时,用于预警和通信中继。
E-3预警机共出动448架次,飞行5546小时,指挥控制各型飞机9万架次的飞行。
由于空战中有预警机指挥控制,以美国为首的多国部队未损失1架参战飞机,伊拉克飞机则被击落40余架[1]。
二、世界现役主要预警机及其机载雷达介绍4. 美国E-2C ,中高空目标探测距离480km,低空目标探测距离270km,可在复杂背景中同时跟踪300个目标,引导己方数十架飞机实施拦截。
︒“鹰眼”预警机。
它是目前世界上最先进的舰载预警机,1968年开始研制,1973年交付使用,主要任务是掌握空情,对进犯的战斗机和导弹进行预警,配合航空母舰或地面指挥所完成对己方战斗机的作战指挥。
E-2C预警机先后使用了AN/APS-138、139和145三种型号的监视雷达,工作在超高频(UHF)波段,具有对空、对海、对地三种工作方式,方位覆盖3605. 美国E-3 ,小型低空目标探测距离300km,大型高空目标探测距离600km,可在复杂背景中同时跟踪600个目标,引导己方上百架飞机实施拦截,并具有良好的对抗各种人为干扰的能力。
民航机场天气雷达现状及应用需求分析民航青海空管分局 马伊清随着民航快速发展,机场天气雷达从最初的常规雷达发展到多普勒天气雷达、双偏振天气雷达、相控阵天气雷达,在北京新机场安装的正是相控阵气象雷达;在众多硬件探测技术更迭和产品更新中,作为信号数据源提供给预报员和驻场相关用户业务使用的天气雷达产品却缺乏多样性,明显不符合民航气象的业务规划需求,同时在高端硬件配置和探测性能方面存在一定的过剩和冗余。
青海机场属于高原机场,天气十分复杂,气候变化非常恶劣。
因此,关注和了解气象雷达的发展变得比较迫切。
本文通过对气象雷达现状和应用进行分析,对我局天气雷达的投入建设和实际应用提供部分参考意义。
1.民航机场天气雷达的现在目前,民航机场气象雷达主要使用的是强度、速度、谱宽等相关产品,各个站点上传提供用户的是单一仰角的PPI强度图。
而由于雷达在不同仰角的方位遮蔽角不同,因此在提供给用户使用产品时,如果选择低仰角,在部分方位上可能因为存在遮挡造成较高地方探测不到回波信息。
如果选高仰角,在雷达距离远处会探测不到低空相关区域的回波或因为充塞率偏低造成反射率偏弱。
针对此种现象,气象业务人员可以通过体扫方式查看不同高度回波,不影响预报工作。
而对管制人员和航空公司业务人员来讲,由于只能看到单一仰角,当机组反应某个高度有强回波时,管制员看到雷达图显示没有回波或很弱。
因此,开发相应的雷达产品成为未来发展方向。
天气雷达软硬件技术在近些年来有很大发展,主要有双极化相控阵气象雷达( DP-PAWR) 、相控阵气象雷达 ( PAWR) 和固态气象雷达(SSWR)等典型主要新型气象雷达。
其中DP-PAWR是最先进的双极化气象雷达,用于对气象进行快速、可靠观测,弥补目前单极化 PAWR的缺点,PAWR 是一种先进的气象雷达,适用于观测对流云高空时的分辨率。
这种雷达能在1 min 内进行全立体扫描,而传统抛物线天线雷达的扫描时间要超过5 min,而SSWR 配备的半导体发射机采用双极化能力,性能稳定,适用于精确降雨观测。
航空航天领域的结构动力学分析方法在航空航天领域中,结构动力学是一门关键的学科,它研究了飞行器或航天器在飞行过程中受到的各种载荷以及结构的振动响应。
结构动力学分析方法的发展和应用对于设计和优化飞行器结构,提高其可靠性和耐久性具有重要意义。
本文将介绍航空航天领域中常用的结构动力学分析方法。
一、模态分析方法模态分析是结构动力学中最基本和常用的方法之一。
它通过计算结构的固有频率、振型和振幅等参数,来了解结构的振动特性。
在航空航天工程中,模态分析被广泛应用于预测和控制结构的振动问题。
通过模态分析,可以有效地识别结构的主要振型,并设计出相应的控制策略,以减小结构振动引起的破坏。
二、频响分析方法频响分析是指在结构受到谐波激励时,计算结构的频率响应。
在航空航天领域,频响分析被广泛应用于结构在飞行过程中受到的各种载荷的分析。
根据不同频率下的振动响应,可以评估结构的稳定性和性能。
频响分析方法可以帮助工程师确定结构的固有频率、共振频率以及传递函数等参数,从而对结构的设计和优化提供指导。
三、有限元分析方法有限元分析是一种数值分析方法,能够模拟结构的复杂力学行为。
在航空航天工程中,有限元分析广泛应用于各种结构的强度、刚度和振动等方面的分析。
有限元方法将结构划分为多个小区域,通过建立节点和单元之间的关系,建立结构的数学模型。
然后通过求解得到节点的位移、应力等信息,从而分析结构的力学行为。
有限元分析方法可以提供多种载荷情况下结构的响应,为工程师提供了设计和优化结构的依据。
四、瞬态分析方法瞬态分析是指在结构受到突发载荷或者非稳态载荷时,计算结构的响应。
在航空航天领域,由于飞行器或航天器在飞行过程中受到的载荷是时变的,因此瞬态分析方法被广泛应用于结构的疲劳性能和振动响应的分析。
通过瞬态分析,工程师可以了解结构在不同时刻的响应情况,从而对结构的材料和几何参数进行调整,提高结构在复杂载荷下的工作性能。
综上所述,航空航天领域的结构动力学分析方法包括模态分析、频响分析、有限元分析和瞬态分析等多种方法。
详解印度“费尔康”预警机印度“费尔康”:俄罗斯的平台,以色列的雷达印度的伊尔-76“费尔康”系统是以色列飞机工业公司为印度空军研制的大型陆基预警机。
2004年3月,印度方面向以色列订购了3架此型预警机。
其载机为换装了新型PS-90A76涡轮风扇发动机的俄制伊尔-76MD运输机,机上安装了以色列飞机工业公司旗下埃尔塔公司研制的“费尔康”机载有源相控阵预警雷达等任务电子成套设备。
机载雷达系以色列“费尔康”第二代产品印度伊尔-76预警机上安装的“费尔康”系统机载雷达,是埃尔塔公司第二代产品。
与第一代“费尔康”不同(3个“共形”阵列,覆盖280度方位,用于智利空军的“神鹰”/波音707“费尔康”预警机),伊尔-76“费尔康”采用的第二代雷达是背负式的,即相控阵列安装在机背之上的固定式圆形天线罩内。
在内部结构上,为了覆盖360度方位,第二代“费尔康”的固定式圆形天线罩内有3个相同的有源相控阵雷达天线面,排列成三角形。
为了保证全方位上探测距离的一致性,该三角形三边相等,同时为减少伊尔-76高垂尾对雷达波束的影响,该正三角形的一个角正对机尾方向,这是因为机身两侧的空域是由正三角形侧面的两条边所对应的天线阵面来覆盖的,每一个天线阵面各覆盖120度,垂尾方向正好处于这两个天线阵面扫描角度的极限。
每个天线阵面长约8.8米,高约1.6米,有数百个独立的固态发射/接收(T/R)组件,天线罩直径达11米,雷达频段为L波段,波长约为25厘米。
雷达对于超低空飞行的小型战斗机目标,下视探测距离超过370千米。
电子侦察系统除了机载雷达之外,伊尔-76“费尔康”的任务电子系统还包括电子侦察系统。
其中雷达频段的电子侦察系统,频率覆盖范围500MHz至18000MHz,能360度全方位接收、分析和定位雷达信号。
以色列在世界上最早成功应用了机载时差测向技术。
这种测向技术在机身的四个不同位置上分别放置4副天线,用于接收到达预警机的雷达辐射源信号,通过测量雷达信号达到这4副天线的时间的不同,来确定雷达波的所在方位。
A320系列飞机气象雷达系统介绍及机组操作建议日期:09-08-13 14:09:51 作者:邵川(机务部技术科)郭振宇(机务部技术科)概述:机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。
机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。
在显示器上用不同的颜色来表示降水的密度和地形情况。
新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。
本文主要针对我公司A320系列飞机机载气象雷达系统的组成、工作原理、显示特点及我公司A320系列飞机气象雷达的种类和机组操作建议进行了介绍。
一、机载气象雷达系统的组成机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等,如图1-1所示:雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。
雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。
天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。
显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。
控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。
波导系统:波导管作为收发机和天线之间射频信号桥梁通道。
二、气象雷达对目标的探测机载气象雷达主要用来探测飞机前方航路上的气象目标和其他目标的存在以及分布状况,并将所探测目标的轮廓、雷雨区的强度、方位和距离等显示在显示器上。
它是利用电磁波经天线辐射后遇到障碍物被反射回来的原理,目标的导电系数越高,反射面越大,则回波越强。
要清楚气象雷达如何工作的关键在于了解雷雨的反射率。
一般来说,雷雨的反射率被划分成三个部分:雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。
机载有源相控阵雷达特征分析首先,机载有源相控阵雷达具有较高的分辨率。
相控阵技术采用多个天线阵列,并利用信号的相位差实现波束的形成。
相比传统的机械扫描雷达,有源相控阵雷达能够实现快速的电子扫描,从而大大提高了雷达的角度分辨率和距离分辨率。
这使得机载有源相控阵雷达能够更准确地确定目标的位置和运动状态,提供更为精确的目标信息。
其次,机载有源相控阵雷达具有较强的多目标探测和跟踪能力。
有源相控阵雷达采用多个发射器和接收器,可以同时对多个目标进行观测和跟踪。
由于天线柔性,雷达系统可以实现对不同方向的目标进行多目标跟踪,有效提高了雷达系统的目标处理能力。
同时,机载有源相控阵雷达还具有高抗干扰能力,能够快速地识别和区分真实目标与干扰目标,提高了目标跟踪的可靠性。
第三,机载有源相控阵雷达具有较高的隐身探测能力。
有源相控阵雷达的多波束矩阵形成技术可以减小波束间的互相干扰,提高雷达的信噪比和动态范围。
此外,相控阵雷达也可以通过改变发射功率和波束形状,降低被敌方侦测到的概率,实现对隐身目标的有效侦测。
这使得机载有源相控阵雷达在现代战争中的应用得到了广泛的推广。
最后,机载有源相控阵雷达具有较高的自适应能力。
有源相控阵雷达可根据目标特性和环境条件自动调整参数,以实现更好的探测效果和跟踪性能。
例如,雷达可以根据目标的运动速度和距离远近自动调整扫描速度和扫描角度,以实现更高的目标探测概率和跟踪精度。
同时,机载有源相控阵雷达还可以对自身工作状态进行实时监测和调整,提供对雷达系统的自主维护和故障诊断能力。
综上所述,机载有源相控阵雷达具有较高的分辨率、多目标探测和跟踪能力、隐身探测能力和自适应能力。
随着雷达技术的不断发展,机载有源相控阵雷达将在军事和民用领域发挥越来越重要的作用,并在未来的战场上发挥更大的优势。
结构动力学分析在航空工程中的应用结构动力学分析(SDA)是一种研究物体动态响应的分析方法,其主要目的是通过计算、数值模拟或实验来确定某个结构在外部载荷下的响应特性,帮助工程师设计和评估结构的强度和稳定性。
在航空工程领域,结构动力学分析被广泛应用于飞机和航空发动机的设计、评估和改进,为确保飞机的安全和可靠性提供了坚实的理论基础和实验数据。
一、航空工程中的SDA应用案例SDA的应用范围很广,航空工程领域更是如此。
下面列举几个SDA在航空工程中的典型应用案例:1. 飞机结构设计飞机是一种极其复杂的结构,它需要承受很强的动态载荷,包括风荷载、重力荷载、气动荷载、发动机振动荷载等等。
为了确保飞机的安全和可靠性,工程师需要对飞机结构进行详细的分析和设计,以确保其在各种复杂载荷情况下的强度和刚度符合要求。
SDA在这个过程中扮演了重要角色,其中最常见的方法是有限元分析(FEA),它可以用来模拟各种载荷情况下的结构响应,然后进行结构优化和改进。
2. 航空发动机设计航空发动机是飞机的心脏,它需要承受很高的温度、压力和振动荷载。
为了确保发动机的性能和寿命,在设计和制造过程中需要进行详细的SDA分析。
其中,CFD和FEA是两种常用的分析工具,它们可以模拟各种工作条件下的流体和结构响应,然后进行设计改进和优化,以提高发动机的性能和可靠性。
3. 飞机燃油系统分析飞机燃油系统是一种非常重要的结构,它需要承受大量的压力和温度变化,并保证燃油的安全和可靠传输。
为了确保燃油系统的稳定性和安全性,工程师需要进行详细的SDA分析,包括燃油管路的流动和膨胀、燃油泄漏和爆炸、压力和温度变化的影响等等。
通过SDA分析,可以提高燃油系统的性能和可靠性,从而确保飞机的安全飞行。
二、SDA技术发展趋势随着计算机技术的不断发展,SDA技术也在不断改进和创新。
下面列举几个SDA技术的发展趋势:1. 多物理场耦合分析多物理场耦合分析是SDA技术的一个重要发展方向。
情报交流本文2009-11-10收到,霍亮、王燕分别系空军工程大学导弹学院博士生、助教,李秋江系南京军区空军装备部参谋预警机发展现状及趋势霍 亮 王 燕 李秋江 摘 要 预警机在现代战争中起着力量倍增器的作用,是提高军队整体作战效能的有效途径,其在作战中能够有效打击敌方隐藏目标和日益增多的特殊目标。
对空中预警机的组成、作用、关键技术和发展趋势进行了详细的分析。
关键词 预警机 指挥控制 发展趋势引 言预警机又称空中预警指挥飞机,是一种集指挥、控制、通信和情报于一体,用于搜索、监控空中、地面或海上目标,并可指挥引导己方飞机执行作战任务的飞机。
预警机最初是为了减少雷达的探测盲区,增大探测范围而研制的。
由于受到地球曲率的影响,功率再大的雷达也只能探测到30k m~40k m 的目标,这一距离对发现越来越快的攻击机、保护己方目标安全显然是远远不够的。
于是,二战后不久,美国海军率先将警戒雷达装到飞机上,以便尽早发现躲在舰载雷达盲区内低空飞行接近舰队的敌机,由此诞生了预警机。
1 预警机的组成预警机系统通常包括下列分系统:平台分系统、预警雷达分系统、指挥控制分系统、通信分系统、导航分系统、电子战分系统及敌我识别分系统等。
其中,雷达是最核心的组成部分,在某种意义上说,其它部分都在为雷达服务。
1)预警机系统的平台载机作为雷达的一个高机动平台,要求其具有足够的载荷能力,能载得起多功能的任务电子系统和操作人员;有足够的机舱容积,能容纳任务电子系统和任务操作人员;有足够的续航能力,能够完成长时间的预警探测任务。
2)雷达探测分系统通常采用具有下视能力的脉冲多普勒雷达,能在地面和海面的严重杂波环境中探测和跟踪高空或低空、高速或低速目标,能够对数百个目标进行处理和显示。
国外新研制的大型预警机一般都采用固态有源相控阵雷达。
3)敌我识别分系统预警机在复杂战区作战时首先要识别敌我,敌我识别系统主要由询问机和应答机组成。
问询天线通常综合在雷达天线上,在雷达探测目标的同时对目标进行询问,天线扫描一次可以询问200个装有应答机的目标。
机载气象雷达的原理及常见故障分析【摘要】雷达的种类繁多,用途各异。
机载气象雷达的基本功用是探测航路上的雷暴雨、冰雹、湍流、风切变等恶劣气象区域。
机载气象雷达(WXR)的安全性直接影响整机系统和飞行的安全。
机载气象雷达是机载导航系统的重要组成部分,是民航客机上的一种重要导航设备。
气象雷达出现故障极易造成飞机滑回、返航甚至坠毁等事故,因此必须加强对WXR 的维护。
本论文通过对机载气象雷达(WXR-700)基本工作原理的系统性总结,来全面地理解机载气象雷达相关知识,并对常见故障进行了总结、分析。
【关键词】机载气象雷达;WXR-700;故障分析【Abstract】There are many kinds of Radar,their uses are not the same.The basic function of airborne weather radar is to detect the route ofthunderstorms, hail, wind shear, turbulence and other bad weather area.The safety of Airborne Weather Radar (WXR) directly affects the whole aircraftsystem and flight safety.Airborne Weather Radar is an important part of the airborne navigation system is an important navigation equipment of civilairplane. If there is something wrong with Weather Radar,it may easily cause aircraft sliding back,return airport even crashes and other accident,so wemust enhance the maintenance of WXR. This article summarizes the working principle of WXR (WXR -700) briefly to understand the relatedknowledge of WXR,and analysis,summarizes the common faults.【Key words】Airborne Weather Radar; WXR-700; Fault analysis一、机载气象雷达概述机载气象雷达是人们为防范气象风险,保证飞行安全而应用现代科学技术成果而研制的航空电子设备。