双元表达载体系统
- 格式:doc
- 大小:20.50 KB
- 文档页数:4
CRISPR/Cas9-based genome editing technologyA robust CRISPR/Cas9 vector system for multiplex targeting ofgenomic sites in monocot and dicot plants亚热带农业生物资源保护与利用国家重点实验室华南农业大学生命科学学院刘耀光课题组(**************.cn )1. pYLCRISPR/Cas9多靶点载体介绍CRISPR/Cas9是新近发展的基因组编辑技术(图1)。
CRISPR/Cas9切割靶序列仅需要single-guide RNA (sgRNA)以及由sgRNA 引导的Cas9蛋白,比锌指核酸酶(ZFNs ),TALENs 更加简便,高效,因而成为基因组编辑工具的首选。
我们利用CRISPR/Cas9技术可方便地进行多重靶向的特征,构建了一套用于单子叶和双子叶植物的多靶点CRISPR/Cas9基因打靶载体系统。
本套载体将Cas9蛋白表达盒整合到双元载体上,用于装载多个sgRNA 表达盒的多克隆位点Bsa I 位于靠近双元载体RB 位置。
sgRNA 表达盒元件设在中间质粒载体上,利用酶切连接和PCR 方法拼装好,再利用Golden Gate 或Gibson Assembly 克隆方法组装到双元载体上。
本载体系统已经发表(Ma et al., 2015, Molecular Plant , DOI:10.1016/j.molp.2015.04.007)。
5’ NNNNNNNNNNNN GNNNNNNNNNNNNNNNNNNN Target SitePAM NNNNNNNNNNNN-3’3’ NNNNNNNNNNNN NCCNNNNNNNNNNNN-5’NNNNNNNNNNNNNNNNNNNN 5’-G/A NNNNNNNNNNNNNNNNNNNN GUUUUAGAGCUAG A A CGAUA GAAAACUAUUGCCUGAUCGGAAUAAAAUU Cas9nuclease Cleavage site genomesequenceRuvC-like domain HNH domain CUUGAAAAAGUGGCACCGA G CGUGGCU UUUUU-3’NGGFigure 1. A working model of the CRISPR/Cas9 system. The Cas9-sgRNA complex locates to the target site to cleave the DNA to produce double strand break (DSB).2.CRISPR/Cas9载体与sgRNA载体图谱2.1CRISPR/Cas9双元载体本套载体系统的双元载体骨架为pCAMBIA-1300 (ACCESSION: AF234296),Cas9p为本实验室设计合成的植物优化密码子基因,它模拟了禾本科植物基因具有5’端GC含量较高的特征(Figure 2)。
番茄红素β-环化酶基因(LcyB)启动子调控LcyB RNAi双元载体构建莫爱琼;文了;黎海燕;马丽;万小荣【摘要】根据番茄基因组DNA序列信息设计引物进行PCR扩增了Micro-Tom 中番茄红素β-环化酶(Lycopeneβ-cyclase,LcyB)基因起始密码子上游1 534 bp 启动子区域序列(LcyBp),生物信息学分析表明,该启动子序列中存在TA-TA-盒、CAAT-盒、昼夜节律响应元件Circadian、光响应元件Box Ⅰ、真菌激发子响应元件Box-Wl、低温响应元件LTR、响应赤霉素的作用元件P-box、乙烯响应元件ERE、响应生长素的作用元件TGA-element等顺式作用元件.依据番茄LcyB基因序列,设计2对含有不同酶切位点的特异引物进行PCR扩增LcyB基因3'端特异的276 bp DNA片段,利用RNAi载体pKANNIBAL构建了“LcyB启动子-LcyB基因正义片段(Sense)-PDK内含子-LcyB基因反义片段(Antisense)-OCS终止子”的RNAi表达框,并将这一RNAi表达框插入植物双元表达载体pART27的NotⅠ位点,构建成本研究的LcyB启动子驱动的LcyB基因RNAi植物双元表达载体pART-LcyBp-RNAi-LcyB.为利用RNAi技术特异性敲除LcyB基因进而提高番茄果实中番茄红素含量奠定实验基础.【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2016(048)004【总页数】7页(P50-56)【关键词】番茄;番茄红素β-环化酶(Lycopene β-cyclase,LcyB);启动子;RNAi双元载体【作者】莫爱琼;文了;黎海燕;马丽;万小荣【作者单位】仲恺农业工程学院生命科学学院,广州510225;仲恺农业工程学院生命科学学院,广州510225;仲恺农业工程学院生命科学学院,广州510225;仲恺农业工程学院生命科学学院,广州510225;仲恺农业工程学院生命科学学院,广州510225【正文语种】中文【中图分类】Q945.1番茄红素(Lycopene)具有淬灭单线态氧、清除自由基、诱导细胞间连接通讯、调控细胞增殖等多种功能,尤其是对某些癌细胞增殖的抑制作用比α-胡萝卜素和β-胡萝卜素更强,因而成为现在最受关注的类胡萝卜素色素之一,是目前国际功能食品研究和化妆品与食品添加剂研究的焦点,有希望成为最重要的一个化学防癌物质,对人类健康有重要意义[1-2].在高等植物中番茄红素是由八氢番茄红素脱氢转变而来的,番茄红素的代谢途径主要是其环化反应,特别是番茄红素β-环化酶(Lycopene β-cyclase, LcyB)催化其环化形成β-胡萝卜素,是其主要代谢途径,PECKER等[3]克隆鉴定了番茄中编码番茄红素β-环化酶的LcyB 基因,发现其表达在果实后熟阶段降低,从而利于果实中番茄红素的积累. 目前成功的相关转基因植物报道的工作是在类胡萝卜素合成品种中过表达正向催化番茄红素前体合成的关键酶基因,希望提高转基因植株中番茄红素的含量,但由于向番茄红素合成支路的流向增大,往往导致其它以异戊二烯类化合物为前体的合成途径底物缺乏,而对转基因植株的生长发育造成不利影响[4-5]. 例如组成型表达八氢番茄红素合成酶基因的转基因番茄中,因为与赤霉素的生物合成途径竞争牻牛儿牻牛儿焦磷酸(GGPP)前体导致植株矮化等现象,因而无法应用于农业生产[4]. 2000年以色列科学家利用番茄Beta突变体的研究[6]表明,该突变体果实“后熟”期间番茄红素水平明显低于野生型,进一步研究发现这种突变表型是由于第6染色体上编码番茄红素β-环化酶的LcyB基因高表达所致,即番茄红素环化反应增强,大量转变生成β-胡萝卜素了. 迄今尚无番茄中LcyB基因启动子研究的有关报道.一些小的双链RNA可以高效、特异地阻断体内特定基因表达,使特异mRNA降解,诱使细胞表现出特定基因缺失的表型,这一过程称为双链RNA干扰(Double-stranded RNA interference, 简称RNAi)[7-8]. RNAi作为一种反向遗传学的研究方法,为后基因组时代基因功能的分析提供了一种可靠、快速的应用技术平台. 本实验从新型模式植物微型番茄(Micro-Tom)中克隆LcyB基因5’上游启动子序列,并构建其驱动的特异静默LcyB基因的RNAi植物双元表达载体,为在此基础上利用RNAi技术特异性敲除番茄果实中的LcyB基因,通过阻断番茄果实中番茄红素的环化反应来终止以番茄红素为底物继续进行的代谢途径,进而获得番茄红素高富集的优质番茄奠定实验基础.1.1 植物材料微型番茄(Lycopersicon esculentum,称作Micro-Tom)是一种新型模式植物,其生命周期短,从播种到果实成熟只需约70 d,且生长密度高,可达约1 357株/m2;农杆菌介导的Micro-Tom子叶转化频率高,约达80%;Micro-Tom中只有2个主要基因(Dwarf Gene和Miniature Gene)与普通番茄不同[9-10]. 上述特征大大方便了番茄的突变和转基因,且使基因敲除的应用更为便利. Micro-Tom 种子播种在泥炭土中,生长条件为:光周期,16 h光/8 h暗;温度,25±1 ℃. 萌发生长约20 d后取番茄叶片备用.1.2 Micro-Tom LcyB基因5’上游启动子序列克隆采用SDS法提取Micro-Tom叶片基因组DNA[11]. 根据DNA数据库中报道的番茄基因组DNA序列信息(GenBank Accession No. KP233172)设计一对引物(LcyBp-F: 5’-CGRYCGTTCAGTCGTCTTAGGC-3’和LcyBp-R: 5’-CTCGAGACCATTATAGAGAATG-3’),以Micro-Tom基因组DNA为模板,进行PCR扩增LcyB基因5’上游启动子序列,将PCR产物克隆到pMD 19-T (Simple) 载体(TaKaRa)上,通过PCR和酶切检测获得阳性克隆(含质粒pMD-LcyBp)后,挑阳性克隆送上海生工生物技术有限公司测序,获得Micro-Tom LcyB基因5’上游启动子序列(命名为LcyBp).1.3 LcyB基因启动子序列的生物信息学分析将上述克隆的Micro-Tom LcyB基因启动子序列在植物顺式作用元件数据库中的信号扫描程序进行生物信息学分析,搜寻该启动子序列中可能响应外界环境刺激和发育信号的顺式作用元件.1.4 LcyB基因启动子驱动的特异静默LcyB基因的RNAi双元表达载体构建构建LcyB基因RNAi植物表达载体时,本研究选用质粒pKANNIBAL作为基本克隆载体. 以引入的Mcr I和Xho I 2个限制性内切酶酶切质粒pMD-LcyBp,获取LcyBp片段替代质粒pKANNIBAL上的CaMV 35S 启动子,构建成含Micro-Tom LcyB基因启动子的中间RNAi质粒pK-LcyBp.根据DNA数据库中报道的番茄LcyB基因序列信息(GenBank Accession No. AEKE02020044)设计引物RNAi-S1(5’-CTCGAGGATCTTGATCCTAAATACTGGC-3’)和RNAi-S2(5’-GGTACCTGACAGTATGTAGCTCTTATCTCAC-3’)、以及RNAi-AS1(5’-AAGCTTGATCTTGATCCTAAATACTGGC-3’)和RNAi-AS2(5’-ATCGATTGACAGTATGTAGCTCTTATCTCAC-3’)扩增LcyB基因3’端276 bp 片段,在上述4条引物5’端分别引入Xho I、Kpn I和Hind III、Cla I酶切位点. 将2个PCR产物分别克隆到载体pMD 19-T (Simple) (TaKaRa)上,通过PCR、酶切检测及测序验证获得阳性克隆(分别含质粒pMD-RNAiS及质粒pMD-RNAiAS).以Xho I和Kpn I 2个限制性内切酶双酶切质粒pK-LcyBp及质粒pMD-RNAiS,分别回收质粒pK-LcyBp的大片段和质粒pMD-RNAiS酶切后的LcyB基因片段,连接构建成中间RNAi质粒pK-LcyBp-RNAiS;以Hind III和Cla I 2个限制性内切酶双酶切pK-LcyBp-RNAiS及pMD-RNAiAS这2个质粒,分别回收质粒pK-LcyBp-RNAiS的大片段和质粒pMD-RNAiAS酶切后的LcyB基因片段,连接构建成中间RNAi质粒pK-LcyBp-RNAi-LcyB.再利用Not I从质粒pK-LcyBp-RNAi-LcyB切下LcyBp::LcyB RNAi表达框插入植物双元表达载体pART27的Not I位点,最后构建成本研究的RNAi植物双元表达载体pART-LcyBp-RNAi-LcyB.2.1 Micro-Tom LcyB基因启动子序列克隆与生物信息学分析根据DNA数据库中报道的番茄基因组DNA序列信息设计一对引物,以Micro-Tom基因组DNA为模板进行PCR扩增,结果扩增出一条约1 500 bp的DNA片段(图1),将此片段回收后克隆到载体pMD 19-T (Simple)上,通过PCR和酶切检测、筛选,获取含质粒pMD-LcyBp的阳性克隆. 挑阳性克隆送上海生工生物技术有限公司测序,测序结果表明PCR产物为1 551 bp的DNA序列. 对此序列进行BLASTn分析(/Blast.cgi),结果表明其与GenBank DNA数据库中报道的番茄基因组DNA序列信息完全吻合,说明所克隆的DNA序列为Miro-Tom LcyB基因起始密码子ATG上游启动子区域序列(图2). 将克隆的LcyB基因启动子区域序列在国际植物顺式作用元件数据库PlantCARE[12]中进行生物信息学分析,搜寻该启动子序列中可能的响应发育信号和外界环境刺激的顺式作用元件(图2). 在该启动子序列-137~-132(LcyB基因起始密码子ATG上游)处有典型的TATA-box,核心序列为ATATAA[13];-107~-104处有CAAT-box,核心序列为CAAT[14];在-298~-289、-275~-266及-116~-107处有典型的响应昼夜节律的顺式作用元件Circadian,核心序列分别为CAAAAATATC、CAAACACATC及CAAAAGCATC[15];-326~-320处有光响应元件Box I,保守序列为TTTCAAA[16];在-783~-778及-315~-310处有真菌激发子(Elicitor)响应元件Box-W1,核心序列为TTGACC[17];在-712~-707及-383~-378处有低温响应元件LTR,核心序列为CCGAAA[18];另外,在该启动子序列中存在一些响应几种植物激素的顺式作用元件,如-1 352~-1 346及-920~-914处响应赤霉素的作用元件P-box,核心序列为CCTTTTG[19];-327~-320处的乙烯响应元件ERE,核心序列为ATTTCAAA[20];-995~-990响应生长素的作用元件TGA-element,核心序列为AACGAC[13](表1). 序列分析结果表明,所克隆的DNA序列为Micro-Tom LcyB基因起始密码子上游包含各种响应植株发育信号和外界环境刺激的顺式作用元件的启动子区域序列.2.2 LcyB启动子驱动的LcyB基因RNAi双元表达载体构建以限制性内切酶Mcr I和Xho I双酶切质粒pMD-LcyBp,回收LcyBp启动子片段克隆到质粒pKANNIBAL的Mcr I和Xho I位点,替换其中的CaMV 35S 启动子,构建成含番茄LcyB基因启动子的中间RNAi质粒pK-LcyBp. 对构建的载体pK-LcyBp进行PCR和双酶切检测,结果以LcyBp-F和LcyBp-R为引物可特异地扩增出1 551 bp的LcyBp片段,以Mcr I和Xho I 2个限制性内切酶双酶切质粒pK-LcyBp可切下相应大小的DNA片段(图3),说明载体pK-LcyBp构建正确.以Micro-Tom基因组DNA为模板,分别以RNAi-S1和RNAi-S2以及RNAi-AS1和RNAi-AS2为引物,进行PCR扩增LcyB基因3’端276 bp的DNA片段. 按图4的流程构建LcyB启动子驱动的LcyB基因RNAi植物双元表达载体. 用限制性内切酶Xho I和Kpn I双酶切质粒pK-LcyBp,将LcyB基因片段用同样的酶从质粒pMD-RNAiS上切下,然后将2个片断用连接酶连接,构建成质粒pK-LcyBp-RNAiS. 用限制性内切酶Hind III和Cla I双酶切pK-LcyBp-RNAiS,并以同样的酶从质粒pMD-RNAiAS上切下LcyB基因片段,再回收2片段并连接,构建成中间RNAi质粒pK-LcyBp-RNAi-LcyB. 再利用Not I从质粒pK-LcyBp-RNAi-LcyB切下LcyBp::LcyB RNAi表达框插入载体pART27的Not I位点,最后构建成Micro-Tom LcyB启动子驱动的LcyB基因RNAi双元表达载体pART-LcyBp-RNAi-LcyB.对构建的载体pART-LcyBp-RNAi-LcyB进行PCR、酶切及测序检测,结果以LcyBp-F和LcyBp-R为引物可特异地扩增出1 551 bp的LcyBp片段;分别以Xho I/Kpn I和Hind III/Cla I双酶切质粒pART-LcyBp-RNAi-LcyB,均可切下276 bp的LcyB基因片段;以Not I单酶切质粒pART-LcyBp-RNAi-LcyB,得到与预期大小一致的2个片段(图5). 进一步对质粒pART-LcyBp-RNAi-LcyB所有经连接的接合处(Junction Area)进行测序,结果表明,构建质粒的接合处序列都与预期一致,构建过程中未发生碱基插入、缺失等造成的读码框变化. 说明已成功构建Micro-Tom LcyB启动子驱动的LcyB基因RNAi植物双元表达载体(图6).近年来伴随番茄红素重要生理功能的发现,利用基因工程技术改造番茄红素合成途径,提高农作物番茄红素含量的研究成为类胡萝卜素研究领域的新热点. 植物中转入番茄红素合成关键酶同源序列很强的基因非常容易发生基因静默(Gene silencing),从而会降低番茄红素的含量.RNAi具有高度的特异性,只引起与dsRNA同源的mRNA的降解,在由21~23个核苷酸构成的siRNA(small interfering RNA)中只要改变1个核苷酸,就可以使该siRNA序列不对靶向mRNA起作用[21]. 已有大量研究[7-8, 21-24]证实RNAi可高效特异地抑制特定基因的表达,获得功能性丧失,从而成为研究基因功能的良好工具. 本实验从Micro-Tom中克隆了LcyB基因起始密码子上游1 534 bp的启动子区域序列,利用RNAi中间载体pKANNIBAL构建了“番茄LcyB启动子-LcyB基因正义片段(Sense)-PDK内含子-LcyB基因反义片段(Antisense)-OCS终止子”的结构,并将这一结构以Not I从质粒pK-LcyBp-RNAi-LcyB上切下,插入植物双元表达载体pART27的Not I位点,最后构建成本文的RNAi植物双元表达载体pART-LcyBp-RNAi-LcyB. 故可使将来转基因植物中经转录就形成了具有“LcyB基因正义片段-PDK内含子-LcyB基因反义片段”结构的mRNA,LcyB基因正、反义片段通过链内退火,形成dsRNA,激发RNAi机制,形成siRNA,能够与内源LcyB基因转录的mRNA发生特异性作用,使LcyB基因在转录后水平沉默(PTGS).许多报道的转基因实验中所用的启动子多为组成型启动子,如CaMV 35S,在它的调控下,外源基因在转基因植物中所有的发育阶段和所有的部位都能表达,对于需要组织特异性表达的基因来说,在该启动子调控下表达造成营养浪费而常导致植株生长不良,如上述Fray和Grierson将番茄八氢番茄红素合成酶基因在组成型启动子调控下转入番茄,结果幼果异常生长,植物矮化. 在基因工程研究中对于组织或器官特异性启动子的需求是很大的,也越来越受到研究人员的重视. 因此本研究是采用番茄LcyB基因本身的启动子调控LcyB基因RNAi片段的表达,将可更加特异地阻抑LcyB基因在番茄中的时空表达.【相关文献】[1] 谭新平, 王银娜, 刘昕. 番茄红素与癌 [J]. 天然产物研究与开发, 2001, 13(4): 71-75. TAN X P, WANG Y N, LIU X. Lycopene and cancer [J]. Natural Product Research and Development, 2001, 13(4): 71-75.[2] FRASER P D, ROMER S, SHIPTON C A, et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner [J]. Proceedings of the National Academy of Sciences of the Uni-ted States of America, 2002, 99(2):1092-1097.[3] PECKER I, GUBBAY R, CUNNINGHAM F X, et al. Cloning and characterization of cDNAfor lycopene β-cyclase from tomato reveals a decrease in its expression du-ring tomato ripening [J]. Plant Molecular Biology, 1996, 30: 806-819.[4] FRAY R G, GRIERSON D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppre-ssion [J]. Plant Molecular Biology, 1993, 22: 589-602.[5] 刘仲齐, 薛俊, 金凤媚. 番茄果实中类胡萝卜素的合成及其调控 [J]. 天津农业科学, 2005, 11(1): 6-11.LIU Z Q, XUE J, JIN F M. Regulation and formation of carotenoid in tomato fruit [J]. Tianjin Agricultural Sciences, 2005, 11(1): 6-11.[6] RONEN G, CARMEL-GOREN L, ZAMIR D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 11102-11107.[7] HELLIWELL C A, WATERHOUSE P M. Constructs and methods for hairpin RNA-mediated gene silencing in plants [J]. Methods in Enzymology, 2005, 392: 24-35.[8] EARLEY K W, HAAG J R, PONTES O, et al. Gateway-compatible vectors for plant functional genomics and proteomics [J]. The Plant Journal, 2006, 45: 616-629.[9] MEISSNER R, JACOBSON Y, MELAMED S, et al. A new model system for tomato genetics [J]. The Plant Journal, 1997, 12(6): 1465-1472.[10] 刘小花, 张岚岚, 朱长青, 等. Micro-Tom番茄矮化微型机制及其在植物功能基因组学研究中的应用 [J]. 遗传, 2008, 30(10): 1257-1264.LIU X H, ZHANG L L, ZHU C Q, et al. Mechanisms for miniature dwarf characteristics of Micro-Tom tomato and its application in plant functional genomics studies [J]. Hereditas, 2008, 30(10): 1257-1264.[11]WAN X R, LI L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene [J]. Biochemical and Biophysical Research Communications, 2006, 347(4): 1030-1038.[12]LESCOT M, DEHAIS P , MOREAU Y, et al. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1): 325-327.[13]PASTUGLIA M, ROBY D, DUMAS C, et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea [J]. The Plant Cell, 1997, 9(1): 49-60.[14]STRAUB P F, SHEN Q, HO D T H. Structure and promo-ter analysis of an ABA- and stress-regulated barley gene, HVA1 [J]. Plant Molecular Biology, 1994, 26(2): 617-630. [15]PICHERSKY E, BERNATZKY R, TANKSLEY S D, et al. Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins inLycopersicon esculentum (tomato) [J]. Gene, 1985, 40(2): 247-258.[16]KUHLEMEIER C, FLUHR R, GREEN P J. et al. Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements [J]. Genes and Development, 1987, 1(3): 247-255.[17]RUSHTON P J, TORRES J T, PARNISKE M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes [J]. The EMBO Journal, 1996, 15(20): 5690-5700.[18] WHITE A J, DUNN M A, BROWN K, et al. Comparative analysis of genomic sequence and expression of a li-pid transfer protein gene family in winter barley [J]. Journal of Experimental Botany, 1994, 45: 1885-1892.[19]TAKAIWA F, OONO K, WING D, et al. Sequence of three members and expression of a new major subfamily of glutelin genes from rice [J]. Plant Molecular Biology, 1991, 17(4): 875-885.[20]ITZHAKI H, WOODSON W R. Characterization of an ethylene-responsive glutathioneS-transferase gene cluster in carnation [J]. Plant Molecular Biology, 1993, 22(1): 43-58. [21]WESLEY S V, HELLIWELL C A, SMITH N A, et al. Construct design for efficient effective and high-throughput gene silencing in plants [J]. The Plant Journal, 2001, 27(6): 581-590.[22]CHUANG C F, MEYEROWITZ E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 4985-4990.[23]WANG M B, WATERHOUSE P M. Application of gene silencing in plants [J]. Current Opinion in Plant Biology, 2001, 5: 146-150.[24] 李红艳. 核糖体蛋白S6对果蝇发育的影响 [J]. 华南师范大学学报(自然科学版), 2014, 46(3): 107-111.LI H Y. Effect of ribosomal protein S6 on Drosophila development [J]. Journal of South China Normal University (Natural Science Edition),2014, 46(3): 107-111.。
第六章 植物基因工程在自然界的许多双子叶植物中,常常发生一种严重危害植物生长的病害——冠瘿。
已知90多科,600多种双子叶植物都能感染这种病。
一般认为单子叶植物和裸子植物对此病不敏感。
70年代中期,世界上几个实验室发现诱发肿瘤的根癌农杆菌中含有大量的诱瘤质粒Ti(tumor-inducing plasmid),且证实了肿瘤的形成正是由于pTi 中的特定片段——T-DNA 转移并稳定地整合进植物细胞核基因组中的结果;由于其上载着的冠瘿碱合成基因和激素合成基因表达,因此分泌冠瘿碱并形成肿瘤。
人们就把这种冠瘿的形成过程称作天然的植物细胞转化系统。
农杆菌将自身的DNA 插入植物细胞诱发肿瘤只对其本身是有益的,重要原因之一是因课程基因工程原理与技术 班级 生物科学05 生物技术05 教师 詹亚光 范桂枝 学期第二学期 课时 6学时 上课日期 课的类型理论 授课章节 第六章 植物基因工程(1)植物基因转化受体系统的条件(2)植物基因转化受体系统的类型和特性。
(3)植物基因工程载体的种类和特性(4)根癌农杆菌Ti 质粒的结构与功能:T-DNA 、Vir 区操纵子的基因结构与功能。
(5)农杆菌Ti 质粒基因转化机理(6)农杆菌Ti 质粒的改造及载体构建(7)载体构建中常用的选择标记及报告基因(8)根癌农杆菌的转化程序及操作原理(9)外源基因在植物中的表达教学目的和要求 了解植物基因转化受体系统的类型、特性掌握Ti 质粒的结构与功能,植物载体构建原理,植物基因工程常用的载体类型。
教材分析 重点 根癌农杆菌Ti 质粒介导的基因转化的原理和方法难点 植物载体构建原理关键点 转基因植物的获取和检测主要教具和设备材料 投影仪、电脑、常规教学设备教法 板书与多媒体授课相结合思考题 1. 植物基因工程载体种类?2. 根癌农杆菌转化程序?心得为农杆菌诱发植物细胞合成冠瘿碱为自己提供食物。
植物自身不能利用这种物质,只能为它的合成付出代价,别的细菌也不能利用它,在自然条件下,只有农杆菌能分泌分解冠瘿碱的酶,将这些特异产物作为唯一的碳源和氮源来利用。
名词解释一RNase:RNA水解酶Restriction endonucleasr:限制性核酸内切酶RBS:核糖体结合位点SD sequence:SD序列。
可结合原核生物的核糖体。
Ori:复制起始原点Promptor:启动子Klenow fragment:大肠杆菌pol1的大片段Reverse tranecriptase:反转录酶Transferred DNA:转移DNAMCS(multiple cloning site):多克隆位点IPTG: 异丙基-β-D-硫代半乳糖苷X-gal:5-溴4-氯-3-吲哚-β-D-半乳糖苷GUS:β-葡萄糖苷酸酶X-gluc:5-溴4-氯-3-吲哚-β-D葡萄糖苷酸酯Ampr(ampicillin resistance gene):氨苄青霉素抗性基因Cmr:氯霉素抗性基因Tetr:四环素抗性基因Kanr:卡那霉素抗性基因Ermr:红霉素抗性基因Neor:新霉素抗性基因supF:琥珀突变抑制基因phagemid:噬菌粒plasmid:质粒YAC ( yeast artificial chromosome):酵母人工染色体BAC(Bacterial Artificial Chromosome):细菌人工染色体PAC(P1 artificialchromosome):P1人工染色体TEL: 端粒重复序列CEN:着丝粒ARS: 自主复制序列Cosmid:黏粒PCR(Polymerase Chain Reaction):聚合酶链式反应dNTP:脱氧三磷酸核苷RT-PCR:反转录(reverse transcriptase)PCR或实时定量(real-time)PCR DD(RT)-PCR:差异(反转录)显示PCRTAIL PCR:热不对称相错PCRRACE: cDNA末端的快速扩增RAPD:随机扩增多态性DNAAFLP:扩增片段长度多态性SSH:抑制性扣除杂交FISH:荧光原位杂交Vector:载体Blunt end:平末端Match end/cohesive end:匹配黏端/黏性末端Deoxyribonuclease:脱氧核糖核酸酶TAP:烟草算焦磷酸酶SDS:十二烷基磺酸钠PAGE:聚丙烯酰胺凝胶电泳PFGE:脉冲电场凝胶电泳PEG:聚乙二醇DEPC:焦碳酸二乙酯GFP:绿色荧光蛋白Competent cell:感受态细胞PNA:肽核酸Ptac:乳糖操纵子和色氨酸操纵子的杂合启动子GST(Glutathione S-transferase):谷胱甘肽-S-转移酶DDT:二硫苏糖醇Tag:标记蛋白Polyhis-6:六聚组氨酸肽名词解释二1 同裂酶(isoschizomer)识别相同序列的限制酶称同裂酶同尾酶(isocaudarner)许多不同的限制酶切割DNA产生的末端是相同的,且是对称的,即它们可产生相同的黏性突出末端。
双元表达载体系统双元表达载体系统主要包括两个部分:一部分为卸甲Ti质粒,这类Ti质粒由于缺失了T-DNA 区域,完全丧失了致瘤作用,主要是提供Vir基因编码表达Vir蛋白的功能,VIR基因编码的virD2蛋白相当于反式作用元件,能够识别农杆菌转运DNA(T-DNA)两端24bp序列,进而将T-DNA以单链的形式切割下来,同时,VIR基因编码的virE2能够与单链T-DNA结合,形成T-复合物,在核定位序列的作用下,经过宿主细胞T4SS转运体系进入宿主细胞质。
之后便是宿主细胞的转运过程,激活处于反式位置上的T-DNA的转移。
另一部份是微型Ti质粒(Mini-Ti plasmid),它在T-DNA左右边界序列之间提供植株选择标记如NPTII基因以及Lac Z基因等。
双元载体系统的构建的原理是Ti质粒上的Vir基因可以反式激活T-DNA 的转移。
与共整合载体所不同的是,它不依赖两个质粒之间的同源序列,不需要共整合过程就能在农杆菌内独立复制。
原理1.一般植物表达载体是成套使用的,一套中有两个,一个是带有可以供插入外源表达基因的MCS和筛选标签的融合蛋白(通常是GFP或Gus)的普通载体。
另一个载体就是双元载体(binary-vector)了。
通常我们是先将外源基因插入带有筛选标记的载体,然后将此载体上的35S promoter-expression gene-gfp这段全部切下,然后构建亚克隆,其过程就是将上述的片断插入双元载体的LB和RB之间,其插入方向是可以任意的。
然后将带有35S promoter-expression gene-gfp的双元载体转化农杆菌,在通过农杆菌转染植物,最后可以通过农杆菌特有的ti-DNA转染机制,将双元载体的LB和RB之间的片段融合进宿主的基因组上。
我以前用的是pCAMBIA3101+pUC-35S-GFP以及pZPZ211和pAA等2.双元表达载体系统主要包括两个部分3.一部分为辅助Ti质粒,这类Ti质粒由于缺失了T-DNA 区域,完全丧失了致瘤作用,主要是提供ir基因功能,激活处于反式位置上的T-DNA的转移。
4.另一部份是微型Ti质粒(Mini-Ti plasmid),它在T-DNA左右边界序列之间提供植株选择标记如NPTII基因以及Lac Z基因等。
5.双元载体系统的构建的原理是Ti质粒上的ir基因可以反式激活T-DNA 的转移。
与共整合载体所不同的是,它不依赖两个质粒之间的同源序列,不需要共整合过程就能在农杆菌内独立复制。
6.外源DNA克隆到微型Ti质粒T-DNA左右边界序列之间双元载体标签:植物双元表达载体根癌农杆菌(Agrobacterium tumefaciens)是一种革兰氏阴性土壤细菌,能够通过感染植物的伤口,将其Ti质粒上一段含有植物激素和冠瘿碱合成酶基因的DNA转移并整合至植物受体的基因组中。
Ti质粒中的2个独立的区域决定DNA转移及整合:T-DNA区(transferredDNA)和vir区(virlence region)。
基于Ti质粒这个结构特点,1983年Hoekema等提出双元载体策略:将去除致瘤基因的T-DNA区从Ti质粒中分离,放置在一个能在农杆菌和大肠杆菌中复制的穿梭质粒中。
这个穿梭载体称为双元Ti载体。
vir区则存在于一个已经除去T-DNA的Ti 质粒中,在农杆菌中作为辅助质粒,通过反式激活使T-DNA转移到植物细胞基因组中。
由于双元Ti载体的体积小而非常便于基因克隆操作,所以逐渐取代了其它形式的Ti载体,已成为植物基因工程中最重要的植物转化载体。
(1))病毒载体系统:植物病毒作为植物遗传转化的载体系统是由植物病毒的侵染特性所决定的。
以病毒作载体的表达系统为瞬时表达系统,其一般不能把外源荃因整合到植物细胞基因组中。
植物病毒的感染率很高,在较短时间内可获得较大的表达量。
但因以病毒为载体的表达系统每个宿主材料都要接种病毒载体,故瞬时表达系统不易起始。
作为病毒载体的病毒最好是双链DNA植物病毒。
目前己有十几种植物病毒被改造成不同类型的外源蛋白表达载体中:包括椰菜叶病毒(CaMV)、烟草花叶病毒(TMV)、更豆花叶病毒(CPMV)和马铃薯X病毒(PVX)等。
其中在TMV载体中成功表达的外源病毒至少有150种以上。
(2)农杆菌质粒载体系统:质粒载体系统中最常用的质粒有:Ti质粒和Ri质粒。
r质粒存在于根癌农杆菌(Agrobacterium tumcfaciens )中,Ri质粒存在于发根农杆菌(Agxobac[erium tlhixogenis)中。
r质粒和Ri质粒在结构和功能上有许多相似之处,具有荃本一致的特性。
但实际工作中,绝大部分采用五质粒。
农杆菌质粒是一种能实现DNA转移和整合的天然系统。
r质粒有两个区域:T -DNA区〔是质粒上能够转移整合入植物受体墓因组并能在植物细胞中表达从而导致冠瘦瘤的发生,且可通过减数分裂传递给子代的区域)和Vir 区(编码能够实现TDNA转移的蛋白)。
TDNA长度为12一24kb之间,两端各有一个含25hp 重复序列的边界序列,在整合过程中左右边界序列之间的TDNA可以转移并整合到宿主细胞基因组中,研究发现只有边界序列对DNA的转移是必需的,而边界序列之间的 TDNA并不参与转化过程,因而可以用外源基因将其替换。
Vir区位于TDNA以外的一个 35kb内,其产物对TDNA的转移及整合必不可少。
农杆菌侵染植物首先是吸附于植物表面伤口,受伤植物分泌的酚类小分子化合物可以诱导Vir基因的表达。
Vir产物能诱导Ti质粒产生一条新的TDNA单链分子。
此单链分子从五质粒上脱离后,可以与场r产物VIRD2 蛋白共价结合,并在V [RD4和V IRE等蛋白的帮助下从农杆菌进入植物细胞的染色体中。
由于野生型Ti质粒过于庞大,约200一S00kb,为了便于重组DNA操作,研究人员对Ti 质粒进行了改造从而构建一系列合适的Ti衍生载体。
首先除掉了野生型Ti质粒TDNA区的一段DNA片段。
例如:参与植物生长素和细胞分裂素的基因(这些基因过度表达植物激素,从而破坏受体细胞和激素产量)。
此外需在T质粒上加上E. Coli复制起始位点,使得插入外源基因的r质粒在为一个穿梭载体,不但可在农杆菌中复制,而且便于在E. Coli中重组操作与保存。
3甲植物转化载体系统(包括一元载体系统和双元载体系统)。
人们在研究中发现在T -DNA转移过程中,明r基因并不一定与T -DNA位于同一个质粒上,于是通过构建中间载体解决了T质粒不能直接导入目的基因的困难。
大肠杆菌具有能与农杆菌高度接合转移的特性,因此研究者可以将T -DNA片段克隆到大肠杆菌的质粒中,并插入外源基因,最后通过接合转移把上源基因引入到农杆菌的Ti质粒上。
这是一种把预先进行亚克隆、切除、插入或置换的T -DNA引入Ti质粒的有效方法。
带有重组TDNA的大肠杆菌质粒的衍生载体称为“中间载体”(intermediate 4wtor),而接受中间费休的Ti质粒则森为等休T质粒( aevenfor T nlasmid ) .一船早知甲费体或称“缴械”载体。
在这种omc-载体中已经缺失的T DNA部分被大肠杆菌的一种常用质粒 pBR322取代。
这样任何适合于克隆在pBR322质粒的外源DNA片段都可以与pBR322质粒DNA同源重组,而被其整合到one一Ti质粒载体上。
中间载体通常是多拷贝的B. coli小质粒,这一点对下通过体外操作导入外源基因是非常必要的。
从结构特点看可分为两类中间载体:即共整合系统中间载体和双元系统中间载体。
根据两类中间载体,目前己开发出两类转化体系:一类是一元载体系统(整合载体系统),这一类载体系统由一个共整合系统中问表达载体与改造后的受体卫质粒组成。
在农杆菌内,通过同源重组将外源基因整合到修饰过的TDNA上,形成可穿梭的共整合载体,在Vir基因产物的作用下完成目的基因向植物细胞的转移和整合。
但这类方法构建困难,整合体形成率低,一般不常用。
另一类转化体系是双元载体系统,它由两个分别含有TDNA和Vir区的相容性突变Ti 质粒即:微型r质粒(mini一plasmid)和辅助Ti质粒(helper Ti plastnid)构成,TDNA 和Vir基因在两个独立的质粒上,通过反式激活TDNA转移到植物细胞基因组内。
微型Ti 质粒就是含有TDNA边界缺失Vir基因的r质粒,为一个广谱质粒。
它含有一个广泛寄主范围质粒的复制起始位点(oriv),同时具有选择性标记基因。
辅助质粒为含有Vir区段但 TDNA缺失的突变型质粒,完全丧失了致瘤的功能。
因此相当于共整合载体系统中的卸甲质粒。
其作用是提供Vr基因功能。
激活处于反式位置上的TDNA转移。
将微型质位转入到含有辅助性Ti质粒农杆菌的途径有两条:一条是直接用纯化的微型Ti质粒转化速冻的根癌农杆菌感受态细胞;另一条途径是采用三亲交配方法,三亲交配由含微型Ti质粒的E. Coli,含有助动质粒pRK2013的和含有辅助Ti质粒的农杆菌组成。
三细菌混合后产生菌问的接合转导。
pRK2013可移入农杆菌,但由于不能自主复制而被丢失,其进入含有微型Ti质粒的E. Coli后,可促进微型Ti质粒一起或分别转移入农杆菌中。
但由于 pRK2013的“自杀”特性,最终在农杆菌中剩下微型Ti质粒和Ti质粒双元载体,此农杆菌可直接用于植物细胞转化。
双元载体不需经过两个载体的共整合过程。
因此构建的操作过程比较简单:由于微型Ti质粒较小,并无共整合过程,因此质粒转移到农杆菌比较容易,且构建的频率较高。
另外,双元载体在外源摹因的植物转化中效率高于一元载体。