安徽省“江淮十校”2016届高三第一次联考数学理试卷
- 格式:doc
- 大小:5.35 MB
- 文档页数:10
2016-2017学年安徽省江南十校高三(上)第一次联考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z=,则|z|为()A.B.C.D.2.(5分)已知集合A={x|log2(x﹣1)<1},B={x|x2﹣2x﹣3<0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(5分)将函数f(x)=sinxcosx﹣1+sin2x的图象经过恰当平移后得到一个偶函数的图象,则这个平移可以是()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位4.(5分)已知直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣2y+1=0截得的弦长为2,则+的最小值为()A.3 B.+C.2+D.3+25.(5分)某几何体的三视图如图所示,则其外接球的表面积为()A.32πB.16πC.64πD.48π6.(5分)已知平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,=,则•的值为()A.﹣ B.C.D.7.(5分)执行如图所示的程序框图,如果输入的x值是407,y值是259,那么输出的x值是()A.2849 B.37 C.74 D.778.(5分)已知实数x,y满足,则z=4x•()y的最大值为()A.1 B.2 C.4 D.29.(5分)已知双曲线﹣=1(a>0,b>0)的离心率为,左顶点到一条渐近线的距离为,则该双曲线的标准方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=110.(5分)已知α为第三象限角,tan2α=﹣,则sin α的值为()A.±B.﹣C.D.﹣11.(5分)一纸盒中有牌面为6,8,10的扑克牌各一张,每次从中取出一张,依次记下牌面上的数字后放回,当三种牌面的牌全部取到时停止取牌,若恰好取5次牌时停止,则不同取法的种数为()A.60 B.48 C.42 D.3612.(5分)设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3.若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是()A.(1,+∞)B.(2+,+∞)C.(3﹣,+∞) D.(3,+∞)二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)已知二项式(1﹣3x)n的展开式中,第3项和第5项的二项式系数相等,则这个展开式的第4项为.14.(5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,bsinA﹣acosB﹣2a=0,则∠B=.15.(5分)已知定义在R上的函数f(x)的图象关于y轴对称,且满足f(x+2)=f(﹣x),若当x∈[0,1]时,f(x)=3x﹣1,则f(log10)的值为.16.(5分)一个平面图形由红、黄两种颜色填涂,开始时,红色区域的面积为,黄色区域的面积为.现对图形的颜色格局进行改变,每次改变都把原有红色区域的改涂成黄色,原有黄色区域的改涂成红色,其他不变,经过4次改变后,这个图形中红色区域的面积是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}满足a1=1,na n+1=(n+1)a n+n2+n(n∈N*).(1)求证:数列{}为等差数列;(2)若数列{b n}满足b n=,求数列{b n}的前n项和S n.18.(12分)如图,四边形ABEF为矩形,四边形CEFD为直角梯形,CE∥DF,EF⊥FD,平面ABEF⊥平面CEFD,P为AD的中点,且AB=EC=FD.(1)求证:CD⊥平面ACF;(2)若BE=2AB,求二面角B﹣FC﹣P的余弦值.19.(12分)某市有中型水库1座,小型水库3座,当水库的水位超过警戒水位时就需要泄洪.气象部门预计,今年夏季雨水偏多,中型水库需要泄洪的概率为,小弄水库需要泄洪的概率为,假设每座水库是否泄洪相互独立.(1)求至少有一座水库需要泄洪的概率;(2)设1座中型水库泄洪造成的损失量为2个单位,1座小型水库泄洪造成的损失量为1个单位,设ξ表示这4座水库泄洪所造成的损失量之和,求ξ的分布列及数学期望.20.(12分)已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,离心率为,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,).(1)求椭圆C的方程;(2)过F1的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.21.(12分)已知函数f(x)=,其中t是实数.设A,B为该函数图象上的两点,横坐标分别为x1,x2,且x1<x2(1)若x2<0,函数f(x)的图象在点A,B处的切线互相垂直,求x1﹣2x2的最大值;(2)若函数f(x)的图象在点A,B处的切线重合,求t的取值范围.[选修4-1:几何证明选讲]22.(10分)如图,四边形ABCD中,AB∥DC,AC与BD相交于点E,AE=AC,∠ABD的角平分线交AC于点F.(Ⅰ)求的值;(Ⅱ)若AF=FC,求证:BD+DC=2AB.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ﹣ρsinθ﹣4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<4;(2)若存在实数x0,使得f(x0)<log2成立,求实数t的取值范围.2016-2017学年安徽省江南十校高三(上)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016秋•安徽月考)已知复数z=,则|z|为()A.B.C.D.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的公式计算.【解答】解:由z==,得|z|=.故选:C.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.2.(5分)(2016秋•安徽月考)已知集合A={x|log2(x﹣1)<1},B={x|x2﹣2x﹣3<0},则“x∈A”是“x ∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】分别求出关于集合A、B的不等式,结合集合的包含关系判断即可.【解答】解:∵A={x|log2(x﹣1)<1}=(1,3),B={x|x2﹣2x﹣3<0}=(﹣1,3),∴A⊊B,∴“x∈A”是“x∈B”的充分不必要条件,故选:A.【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.3.(5分)(2016秋•安徽月考)将函数f(x)=sinxcosx﹣1+sin2x的图象经过恰当平移后得到一个偶函数的图象,则这个平移可以是()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】利用降幂公式和辅助角公式化简,然后根据三角函数的图象平移得答案.【解答】解:f(x)=sinxcosx﹣1+sin2x=﹣1+=.当把该函数的图象右移个单位,得到函数g(x)==为偶函数.故选:C.【点评】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,是基础题.4.(5分)(2016秋•安徽月考)已知直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣2y+1=0截得的弦长为2,则+的最小值为()A.3 B.+C.2+D.3+2【分析】先求出圆心和半径,由直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣2y+1=0截得的弦长为2,可得直线ax﹣by+2=0经过圆心,可得a+b=2,代入式子再利用基本不等式可求式子的最小值.【解答】解:圆x2+y2+2x﹣2y+1=0 即(x+1)2+(y﹣1)2=1,圆心为(﹣1,1),半径为1,∵直线ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣2y+1=0截得的弦长为2,∴直线ax﹣by+2=0经过圆心,∴﹣a﹣b+2=0,a+b=2,则+=(a+b)(+)=(3++)≥,当且仅当a=b时等号成立,故+的最小值为.故选:B.【点评】本题考查直线和圆的位置关系,弦长公式以及基本不等式的应用.5.(5分)(2016秋•安徽月考)某几何体的三视图如图所示,则其外接球的表面积为()A.32πB.16πC.64πD.48π【分析】由题意,直观图为底面是直角三角形,高为4的直棱柱,底面直角三角形的斜边长为4,将直三棱柱扩充为长方体,底面对角线长为4,所以长方体的对角线长为=4,可得外接球的半径,即可求出外接球的表面积.【解答】解:由题意,直观图为底面是直角三角形,高为4的直棱柱,底面直角三角形的斜边长为4,将直三棱柱扩充为长方体,底面对角线长为4,所以长方体的对角线长为=4,∴外接球的半径为2,∴外接球的表面积为=32π.故选:A.【点评】本题考查三视图,考查外接球的表面积,考查学生的计算能力,确定外接球的半径是关键.6.(5分)(2016秋•安徽月考)已知平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,=,则•的值为()A.﹣ B.C.D.【分析】用表示出,再代入平面向量的数量积计算公式计算.【解答】解:=4,=1,=2×1×cos60°=1.∵=,∴.∴=,=.∴=()•()=﹣++=﹣+1+=.故选:B.【点评】本题考查了平面向量的数量积运算,平面向量的线性运算的几何意义,属于中档题.7.(5分)(2016秋•安徽月考)执行如图所示的程序框图,如果输入的x值是407,y值是259,那么输出的x值是()A.2849 B.37 C.74 D.77【分析】根据已知中的程序框图,模拟程序的运行过程,并逐句分析各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=407,y=259第1次循环后,s=148,x=259,y=148;第2次循环后,s=111,x=148,y=111;第3次循环后,s=37,x=111,y=37;第4次循环后,s=74,x=74,y=37;第5次循环后,s=37,x=37,y=37,结束循环,故输出的x的值为37.故选:B.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用列举法对数据进行管理,属于基础题.8.(5分)(2016秋•安徽月考)已知实数x,y满足,则z=4x•()y的最大值为()A.1 B.2 C.4 D.2【分析】z=4x•()y=22x﹣y,设m=2x﹣y,作出不等式组对应的平面区域求出m的最大值即可.【解答】解:由z=4x•()y=22x﹣y,设m=2x﹣y,得y=2x﹣m,作出不等式对应的可行域(阴影部分),平移直线y=2x﹣m,由平移可知当直线y=2x﹣m,经过点A时,直线y=2x﹣m的截距最小,此时m取得最大值,由,解得,即A(2,2).代入m=2x﹣y,得m=4﹣2=2,即目标函数m=2x﹣y的最大值为2.则z的最大值为22=4,故选:C.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义以及换元法,结合数形结合的数学思想是解决此类问题的基本方法.9.(5分)(2016秋•遵义期中)已知双曲线﹣=1(a>0,b>0)的离心率为,左顶点到一条渐近线的距离为,则该双曲线的标准方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的离心率为,左顶点到一条渐近线的距离为,建立方程组,求出a,b,即可求出该双曲线的标准方程.【解答】解:由题意,,解的b=2,a=2,∴双曲线的标准方程为.故选:D.【点评】本题考查双曲线的方程和性质,主要考查渐近线方程和离心率的求法,属于中档题.10.(5分)(2016秋•安徽月考)已知α为第三象限角,tan2α=﹣,则sin α的值为()A.±B.﹣C.D.﹣【分析】由已知利用二倍角的正切函数公式可求tanα=2,利用同角三角函数基本关系式进而可求sin2α的值,结合角的范围,即可得解.【解答】解:∵tan2α==﹣,α为第三象限角,∴解得:tanα=2或﹣(负值舍去),∴sinα=2cosα,又∵sin2α+cos2α=1,∴sin2α=,∵α为第三象限角,∴sinα=﹣.故选:B.【点评】本题主要考查了二倍角的正切函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.11.(5分)(2016秋•安徽月考)一纸盒中有牌面为6,8,10的扑克牌各一张,每次从中取出一张,依次记下牌面上的数字后放回,当三种牌面的牌全部取到时停止取牌,若恰好取5次牌时停止,则不同取法的种数为()A.60 B.48 C.42 D.36【分析】在前4次中,前两张牌都至少取得1次,在第5次恰好取出最后一种即第三张牌,可以先选出2张牌,在前4次中取到,再用排除法分析得到前4次取牌中,这两张牌,都至少取得1次的情况数目,而第5次恰好取出第第三张牌有1种情况,由分步计数原理可得恰好取5次牌时停止取牌的情况数目.【解答】解:若恰好取5次牌时停止取牌,则在前4次中,前两张牌都至少取得1次,在第5次恰好取出最后一种即第三张牌,在前4次中,只取2张牌,有C32=3种情况,且这张牌都至少取得1次,前4次取牌中,只取这2张牌有24种情况,其中同一张牌的有2种,则前4次取牌有3×(24﹣2)=42种情况,第5次恰好取出第三张牌有1种情况,故恰好取5次牌时停止取牌有42种情况,故选:C.【点评】本题考查利用数学知识解决实际问题,涉及排列、组合与分步计数原理的应用,注意本题是有放回抽取.12.(5分)(2016秋•安徽月考)设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3.若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是()A.(1,+∞)B.(2+,+∞)C.(3﹣,+∞) D.(3,+∞)【分析】根据题意,由单调函数的性质,可得f(x)﹣log2x为定值,可以设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,对其求导可得f′(x);将f (x)与f′(x)代入f(x)+f′(x)=a,求出函数的最小值,即可得答案.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=,代入f(x)+f′(x)=a,可得log2x+2+=a,设g(x)=log2x+2+,则g′(x)=,∴函数g(x)在(0,1)上单调递减,(1,+∞)上单调递增,∴x=1时,函数取得最小值2+,∵方程f(x)+f′(x)=a有两个不同的实数根,∴a>2+,故选:B.【点评】本题考查函数零点与方程根的关系的应用,考查导数知识的运用,关键点和难点是求出f(x)的解析式.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)(2016秋•安徽月考)已知二项式(1﹣3x)n的展开式中,第3项和第5项的二项式系数相等,则这个展开式的第4项为﹣540x3.【分析】根据第3项和第5项的二项式系数相等,求得n=6,再利用二项展开式的通项公式求得这个展开式的第4项.【解答】解:二项式(1﹣3x)n的展开式中,∵第3项和第5项的二项式系数相等,∴=,∴n=6,则这个展开式的第4项为•(﹣3x)3=﹣540x3,故答案为:﹣540x3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.(5分)(2016秋•金安区校级月考)已知a,b,c分别为△ABC三个内角A,B,C的对边,bsinA ﹣acosB﹣2a=0,则∠B=.【分析】利用正弦定理把已知的等式化边为角,由两角和与差的正弦函数公式化简,结合特殊角的三角函数值即可求得B的值.【解答】解:△ABC中,bsinA﹣acosB﹣2a=0,由正弦定理得:sinBsinA﹣sinAcosB﹣2sinA=0,∵sinA≠0,∴sinB﹣cosB=2,即sinB﹣cosB=1,∴sin(B﹣)=1;又0<B<π,∴﹣<B﹣<,∴B﹣=,∴B=.故答案为:.【点评】本题考查了解三角形,训练了正弦定理的应用,考查了三角函数的两角和与差的正弦函数公式,是基础题目.15.(5分)(2016秋•安徽月考)已知定义在R上的函数f(x)的图象关于y轴对称,且满足f(x+2)=f (﹣x),若当x∈[0,1]时,f(x)=3x﹣1,则f(log10)的值为.【分析】本题函数解析式只知道一部分,而要求的函数值的自变量不在此区间上,由题设条件知本题中所给的函数具有对称性函数,故可以利用这一性质将要求的函数值转化到区间[0,1)上求解.【解答】解:由题意定义在R上的偶函数f(x),满足f(x+2)=f(﹣x),∴函数图象关于x=1对称,当x∈[0,1]时,f(x)=3x﹣1,log10=﹣log310∈(﹣3,﹣2)由此f(log10)=f(2﹣log310)=f(log3)=f(﹣log3)===.故答案为:【点评】本题考点抽象函数的应用,函数的值求法,利用函数的性质通过转化来求函数的值,是函数性质综合运用的一道好题.对于本题中恒等式的意义要好好挖掘,做题时要尽可能的从这样的等式中挖掘出信息.16.(5分)(2016秋•安徽月考)一个平面图形由红、黄两种颜色填涂,开始时,红色区域的面积为,黄色区域的面积为.现对图形的颜色格局进行改变,每次改变都把原有红色区域的改涂成黄色,原有黄色区域的改涂成红色,其他不变,经过4次改变后,这个图形中红色区域的面积是.【分析】根据每次改变都把原有红色区域的改涂成黄色,原有黄色区域的改涂成红色,其他不变,即可得出结论.【解答】解:开始时,红色区域的面积为,黄色区域的面积为.1次改变后,这个图形中红色区域的面积是+=,黄色区域的面积是+=12次改变后,这个图形中红色区域的面积是+=2,黄色区域的面积是1+=3次改变后,这个图形中红色区域的面积是2+=,黄色区域的面积是+=4次改变后,这个图形中红色区域的面积是+=,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2016秋•金安区校级月考)已知数列{a n}满足a1=1,na n+1=(n+1)a n+n2+n(n∈N*).(1)求证:数列{}为等差数列;(2)若数列{b n}满足b n=,求数列{b n}的前n项和S n.【分析】(1)由已知得,n∈N*,从而能证明数列{}为等差数列.(2)求出,从而b n===,由此利用裂项求和法能求出数列{b n}的前n项和.【解答】证明:(1)∵数列{a n}满足a1=1,na n+1=(n+1)a n+n2+n(n∈N*),∴,即,n∈N*,又=1,故数列{}为首项为1,公差为1的等差数列.…(4分)解:(2)∵数列{}为首项为1,公差为1的等差数列,∴,∴,∴b n===,∴数列{b n}的前n项和:S n=(1﹣)+()+…+(]=1﹣=.…(12分)【点评】本题考查数列为等差数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.(12分)(2016秋•安徽月考)如图,四边形ABEF为矩形,四边形CEFD为直角梯形,CE∥DF,EF ⊥FD,平面ABEF⊥平面CEFD,P为AD的中点,且AB=EC=FD.(1)求证:CD⊥平面ACF;(2)若BE=2AB,求二面角B﹣FC﹣P的余弦值.【分析】(1)通过证明AF⊥CD,CD⊥FC.即可证明CD⊥平面ACF.(2)利用空间直角坐标系,通过求解平面的法向量,利用向量的数量积求解即可.【解答】(1)证明:∵AF⊥EF,平面ABEF⊥平面CEFD,平面ABEF∩平面CEFD=EF,∴AF⊥平面CEFD,从而AF⊥CD.设Q为DF的中点,连接CQ.∵四边形CEFD为直角梯形,EC=FD=FQ,EC=AB=EF,∴四边形CEFQ为正方形,△CQD为等腰直角三角形.∴∠FCD=90°,即CD⊥FC.又AF∩CF=F,∴CD⊥平面ACF…(6分)(2)解:以F为坐标原点,FE,FD,FA所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,设AB=1,则BE=2,FD=2.∴F(0,0,0),C(1,1,0),B(1,0,2),D(0,2,0),A(0,0,2),P(0,1,1),故=(1,1,0),=(1,0,2),=(0,1,1),设平面SFC的一个法向量=(x1,y1,z1),则,∴,令z1=1,则=(﹣2,2,1).同理可得,平面FCP的一个法向量=(1,﹣1,1).∴cos==﹣,由图可知,二面角B﹣FC﹣P的余弦值为:…(12分)【点评】本题考查二面角的平面镜的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.19.(12分)(2016秋•安徽月考)某市有中型水库1座,小型水库3座,当水库的水位超过警戒水位时就需要泄洪.气象部门预计,今年夏季雨水偏多,中型水库需要泄洪的概率为,小弄水库需要泄洪的概率为,假设每座水库是否泄洪相互独立.(1)求至少有一座水库需要泄洪的概率;(2)设1座中型水库泄洪造成的损失量为2个单位,1座小型水库泄洪造成的损失量为1个单位,设ξ表示这4座水库泄洪所造成的损失量之和,求ξ的分布列及数学期望.【分析】(1)利用对立事件概率计算公式能求出至少有一座水库需要泄洪的概率.(2)ξ的可能取值为0,1,2,3,4,5.分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)至少有一座水库需要泄洪的概率是1﹣(1﹣)×(1﹣)3=.…(3分)(2)ξ的可能取值为0,1,2,3,4,5.P(ξ=0)=(1﹣)×(1﹣)3=,P(ξ=1)=(1﹣)×=,P(ξ=2)=×(1﹣)=,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==.故ξ的分布列为:ξ0 1 2 3 4 5P故Eξ=+5×=.…(12分)【点评】本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率公式的合理运用.20.(12分)(2016秋•安徽月考)已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,离心率为,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,).(1)求椭圆C的方程;(2)过F1的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.【分析】(1)由椭圆的离心率公式及椭圆的性质可知:e==,a=c,b=c,将P(﹣c,),代入椭圆方程,即可求得c,求得a和b的值,求得椭圆方程;(2)由题意设直线方程,代入椭圆方程,与韦达定理及弦长公式分别求得丨AB丨和丨PQ丨,由平行四边形的性质可知:丨AB丨=丨PQ丨,即可求得k的值.【解答】解:(1)由题可得,由椭圆的离心率公式可知:e==,即a=c,由椭圆的性质可知:b2=a2﹣c2=2c2,将P点坐标(﹣c,),代入椭圆方程:,解得:c=1,∴a=,b=.故椭圆的方程为…(4分)(2)设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由得,(2+3k2)x2+6k2x+3k2﹣6=0,由韦达定理可知:x1+x2=﹣,x1•x2=.∴由弦长公式可知丨AB丨=•=,…(8分)∵P(﹣1,)PQ∥AB,∴直线PQ的方程为y﹣=k(x+1).将PQ的方程代入椭圆方程可知:(2+3k2)x2+6k2(k+)+3(k+)2﹣6=0,∵x P=﹣1,∴x Q=,∴丨PQ丨=•丨x P﹣x Q丨=•,若四边形PABQ成为平行四边形,则丨AB丨=丨PQ丨,∴4=丨4﹣4k丨,解得k=﹣.故符合条件的直线l的方程为y=﹣(x+1),即x+y+1=0…(12分)【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及平行四边形性质的综合应用,考查计算能力,属于中档题.21.(12分)(2016秋•安徽月考)已知函数f(x)=,其中t是实数.设A,B为该函数图象上的两点,横坐标分别为x1,x2,且x1<x2(1)若x2<0,函数f(x)的图象在点A,B处的切线互相垂直,求x1﹣2x2的最大值;(2)若函数f(x)的图象在点A,B处的切线重合,求t的取值范围.【分析】(1)由已知f′(x1)f′(x2)=﹣1,可得(2x1+4)(2x2+4)=﹣1,从而x1﹣2x2=﹣[+2(2+x2)]+2,即可得出x1﹣2x2的最大值;(2)根据函数f(x)的图象在点A,B处的切线重合,得出t=﹣1﹣ln(2x1+3),最后利用导数研究它的单调性和最值,即可得出t的取值范围.【解答】解:(1)当x2<0时,x1<0.由已知f′(x1)f′(x2)=﹣1,∴(2x1+4)(2x2+4)=﹣1,故x1==2…(2分)∴x1﹣2x2=﹣[+2(2+x2)]+2,∵2x1+4<2x2+4,∴2x1+4<0<2x2+4,∴x1﹣2x2≤2﹣,当且仅当x2=﹣2时,等号成立,故x1﹣2x2的最大值为2﹣…(5分)(2)由题意得,f′(x1)=f′(x2)=…(6分)∵x1<x2,∴x1<0,x2>0.∴2x1+4=1+=,解得t=﹣1﹣ln(2x1+3),令g(x)=x2﹣1﹣ln(2x+3),﹣<x<0,则g′(x)=2x﹣…(8分)∵x<0,2x+3>0,∴g′(x)<0,故g(x)在(﹣,0)内单调递减…(10分)∴当x∈(﹣,0)时,g(x)>g(0)=﹣1﹣ln3,∴t>﹣1﹣ln3,即t的取值范围为(﹣1﹣ln3,+∞)…(12分)【点评】本题以函数为载体,考查分段函数的解析式,考查函数的单调性,考查直线的位置关系的处理,注意利用导数求函数的最值.[选修4-1:几何证明选讲]22.(10分)(2016秋•安徽月考)如图,四边形ABCD中,AB∥DC,AC与BD相交于点E,AE=AC,∠ABD的角平分线交AC于点F.(Ⅰ)求的值;(Ⅱ)若AF=FC,求证:BD+DC=2AB.【分析】(Ⅰ)利用AB∥DC,==,即可求的值;(Ⅱ)证明四边形CDGH是平行四边形,DC=GH,可得BD+DC=BG+GH=BH.结合AF=FC,证明:BD+DC=2AB.【解答】(Ⅰ)解:∵AE=AC,∴=,∵AB∥DC,∴==;(Ⅱ)证明:分别过点D,C作BF的平行线交AB的延长线于G,H,则∠ABF=∠BGD,∠EBF=∠BDG.∵BF平分∠ABD,∴∠ABF=∠EBF,∴∠BGD=∠BDG,∴BD=BG.∵DG∥CH,DC∥GH,∴四边形CDGH是平行四边形,∴DC=GH,∴BD+DC=BG+GH=BH.∵BF∥CH,∴=,∴BH=2AB,∴BD+DC=2AB.【点评】本题考查平行线的性质,平行四边形的证明,考查学生分析解决问题的能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2016秋•七里河区校级期中)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ﹣ρsinθ﹣4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.【分析】(1)利用参数方程与普通方程,极坐标方程与直角坐标方程互化的方法,可得曲线C1的普通方程和曲线C2的直角坐标方程;(2)利用参数方法,求|PQ|的最小值.【解答】解:(1)由曲线C1的参数方程为(θ为参数),消去参数θ得,曲线C1的普通方程得+=1.由ρcosθ﹣ρsinθ﹣4=0得,曲线C2的直角坐标方程为x﹣y﹣4=0…(5分)(2)设P(2cosθ,2sinθ),则点P到曲线C2的距离为d==,…(8分)当cos(θ+45°)=1时,d有最小值0,所以|PQ|的最小值为0…(10分)【点评】本题考查参数方程与普通方程,极坐标方程与直角坐标方程的互化,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.[选修4-5:不等式选讲]24.(2016秋•安徽月考)已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<4;(2)若存在实数x0,使得f(x0)<log2成立,求实数t的取值范围.【分析】(1)把要求得不等式去掉绝对值,化为与之等价的3个不等式组,求得每个不等式组的解集,再取并集,即得所求.(2)求得函数f(x)的最小值为,根据题意可得=log22<log2成立,由此求得实数t的取值范围.【解答】解:(1)∵函数f(x)=|2x﹣1|+|x+1|=,∵不等式f(x)<4,∴①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x≤,解③求得<x<.综上可得,不等式的解集为{x|﹣<x<}.(2)若存在实数x0,使得f(x0)<log2成立,由(1)知函数f(x)的最小值为f()=,∴=log22<log2成立,∴>2,求得t2>9,∴t>3,或t<﹣3.故实数t的取值范围为{t|t>3,或t<﹣3}.【点评】本题主要考查带有绝对值的函数,解绝对值不等式,体现了等价转化、分类讨论的数学思想,属于中档题.2016年12月26日。
2016-2017学年安徽省“江淮十校”高三(上)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={1,2,3,4},B={x|y=log2(3﹣x)},则A∩B=()A.{1,2} B.{1,2,3} C.{1,2,3,4} D.{4}【考点】交集及其运算.【分析】根据对数函数的定义求出集合B中元素的范围,再由交集的定义求出A∩B即可.【解答】解:∵A={1,2,3,4},B={x|y=log2(3﹣x)}={x|x<3},则A∩B={1,2},故选:A.2.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率是()A.B.C.D.不确定【考点】几何概型;任意角的三角函数的定义.【分析】根据题意确定为几何概型中的长度类型,将长度为3m的绳子分成相等的三段,在中间一段任意位置剪断符合要求,从而找出中间1m处的两个界点,再求出其比值.【解答】解:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率.故选B3.将函数y=sin2x的图象先向左平行移动个单位长度,再向上平行移动1个单位长度,得到的函数解析式是()A.y=sin(2x﹣)+1 B.y=sin(2x+)+1 C.y=sin(2x+)+1D.y=sin(2x﹣)+1【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】第一次变换可得可得函数y=sin2(x+)的图象,第二次变换可得函数y=sin2(x+)+1的图象,从而得出结论.【解答】解:将函数y=sin2x的图象先向左平行移动个单位长度,可得函数y=sin2(x+)的图象,再向上平行移动1个单位长度,可得函数y=sin2(x+)+1=sin(2x+)+1 的图象,故选B.4.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.2πD.【考点】由三视图求面积、体积.【分析】由三视图可以看出,此几何体是一个上部为半圆锥、下部为圆柱的几何体,故可以分部分求出半圆锥与圆柱的体积再相加求出此简单组合体的体积.【解答】解:所求几何体为一个圆柱体和半圆锥体构成.其中半圆锥的高为2.其体积为=,圆柱的体积为π•12•1=π故此简单组合体的体积V=π+=.故选:A.5.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.6【考点】循环结构.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是判断S=>0.8时,n+1的值.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.则输出的n=4故选B.6.若变量x、y满足约束条件,则z=的最小值为()A.0 B.1 C.2 D.3【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用目标函数的几何意义:平面区域内的一点与原点连线的斜率求最小值【解答】解:作出的可行域如图所示的阴影部分,由于z==1+2的几何意义是平面区域内的一点与原点连线的斜率的2倍加1,结合图形可知,直线OA的斜率最小,由可得A(2,1),此时z===2.故选:C.7.已知{a n}为等差数列,a1+a2+a3=156,a2+a3+a4=147,{a n}的前n项和为S n,则使得S n达到最大值的n是()A.19 B.20 C.21 D.22【考点】等差数列的前n项和.【分析】写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件.【解答】解:设{a n}的公差为d,由题意得:a1+a2+a3=a1+a1+d+a1+2d=156,即a1+d=52,①a2+a3+a4=a1+d+a1+2d+a1+3d=147,即a1+2d=49,②由①②联立得a1=55,d=﹣3,∴S n=55n+×(﹣3)=﹣n2+n=﹣(n﹣)2+.∴观察选项,当n=19时,使得S n达到最大值.故选:A.8.设m、n是两条不同的直线α、β是两个不同的平面,有下列四个命题:①如果α∥β,m⊂α,那么m∥β;②如果m⊥α,β⊥α,那么m∥β;③如果m⊥n,m⊥α,n∥β,那么α⊥β;④如果m∥β,m⊂α,α∩β=n,那么m∥n其中正确的命题是()A.①②B.①③C.①④D.③④【考点】命题的真假判断与应用.【分析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①如果α∥β,m⊂α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确故选:C9.已知函数f(x)=是R上的增函数,则实数a的取值范围是()A.﹣1<a<1 B.﹣1<a≤1 C.D.【考点】分段函数的应用.【分析】根据f(x)在R上单调递增便可知,二次函数x2﹣2ax+2在[1,+∞)上单调递增,一次函数(a+1)x+1在(﹣∞,1)上单调递增,列出不等式,即可得出实数a的取值范围.【解答】解:函数f(x)=是R上的增函数,;∴当x≥1时,f(x)=x2﹣2ax+2为增函数;∴a≤1;当x<1时,f(x)=(a+1)x+1为增函数;∴a+1>0;∴a>﹣1;且a+2≤3﹣2a;解得;∴实数a的取值范围为:(﹣1,].故选:D.10.设a>b>0,a+b=1,且x=()b,y=log ab,z=log a,则x、y、z的大小关系是()A.y<z<x B.z<y<x C.x<y<z D.y<x<z【考点】对数值大小的比较.【分析】由已知得到a,b的具体范围,进一步得到ab,,的范围,结合指数函数与对数函数的性质得答案.【解答】解:由a>b>0,a+b=1,得0,,且0<ab<1,则,,a<,∴x=()b>0,y=log ab=﹣1,0=>z=log a>=﹣1,∴y<z<x.故选:A.11.已知A、B是球O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则球O的表面积为()A.4πB.C.16πD.32π【考点】球的体积和表面积.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB==,故R=2,则球O的表面积为4πR2=16π,故选:C.12.设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=2x,若对x∈[1,2],不等式af(x)+g(2x)≥0恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.C.D.【考点】函数奇偶性的性质.【分析】先根据函数奇偶性定义,解出奇函数f(x)和偶函数g(x)的表达式,将这个表达式不等式af(x)+g(2x)≥0,令t=2x﹣2﹣x,则t>0,通过变形可得a≥﹣(t+),讨论出右边在x∈[1,2]的最大值,可以得出实数a的取值范围.【解答】解:∵f(x)为定义在R上的奇函数,g(x)为定义在R上的偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x)又∵由f(x)+g(x)=2x,结合f(﹣x)+g(﹣x)=﹣f(x)+g(x)=2﹣x,∴f(x)=(2x﹣2﹣x),g(x)=(2x+2﹣x)不等式af(x)+g(2x)≥0,化简为(2x﹣2﹣x)+(22x+2﹣2x)≥0∵1≤x≤2∴≤2x﹣2﹣x≤令t=2x﹣2﹣x,则t>0,因此将上面不等式整理,得:a≥﹣(t+).∵≤t≤∴≤t+≤∴a≥﹣.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是x﹣y+1=0.【考点】直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系.【分析】先求圆心,再求斜率,可求直线方程.【解答】解:易知点C为(﹣1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x﹣y+1=0.故答案为:x﹣y+1=0.14.已知,则sin2x=.【考点】二倍角的正弦.【分析】由诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算求值.【解答】解:∵,∴.故答案为:.15.设函数f(x)=sin(wx+φ),其中|φ|<.若f(﹣)≤f(x)≤f()对任意x∈R恒成立,则正数w的最小值为2,此时,φ=﹣.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】直接利用函数的周期的最大值,即可求解ω的最小值.通过函数的最大值求出φ【解答】解:因为函数f(x)=sin(ωx+φ),其中|φ|<.若f(﹣)≤f(x)≤f()对任意x∈R恒成立,所以的最大值为:,所以正数ω的最小值为:,ω=2,因为函数的最大值为f(),所以2×=,所以φ=,故答案为:2,.16.已知,满足||=||=•=2,且(﹣)•(﹣)=0,则|2﹣|的最小值为﹣1.【考点】平面向量数量积的运算.【分析】求出的夹角,建立平面直角坐标系,设=(2,0),则=(1,),根据数量积的几何意义得出C的轨迹,利用点到圆的最短距离求出|2﹣|的最小值.【解答】解:∵||=||=•=2,∴cos<>==,∴<>=60°.设=(2,0),==(1,),,∵(﹣)•(﹣)=0,∴,∴C的轨迹为以AB为直径的圆M.其中M(,),半径r=1.延长OB到D,则D(2,2).连结DM,交圆M于C点,则CD为|2﹣|的最小值.DM==.∴CD=.故答案为:﹣1.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.我国是世界上严重缺水的国家.某市政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3.5吨的人数,并说明理由;(3)若在该选取的100人的样本中,从月均用水量不低于3.5吨的居民中随机选取3人,求至少选到1名月均用水量不低于4吨的居民的概率.【考点】古典概型及其概率计算公式;频率分布直方图.【分析】(1)由频率统计相关知识,各组频率之和的值为1,由此能求出a.(2)由图求出不低于3.5吨人数所占百分比,由此能估计全市月均用水量不低于3.5吨的人数.(3)由不低于3.5吨人数所占百分比为6%,得该选取的100人的样本中,月均用水量不低于3.5吨的居民有6人,其中[3.5,4)之间有4人,[4,4.5)之间有2人,由此能求出从6人中取出3人,至少选到1名月均用水量不低于4吨的居民的概率.【解答】解:(1)由频率统计相关知识,各组频率之和的值为1,∵频率=,∴0.5×(a+0.16+0.3+0.4+0.52+0.3+0.12+a+0.04)=1得a=0.08.(2)由图,不低于3.5吨人数所占百分比为0.5×(0.08+0.04)=6%,∴估计全市月均用水量不低于3.5吨的人数为:30×6%=1.8(万),(3)由(2)不低于3.5吨人数所占百分比为0.5×(0.08+0.04)=6%,因此该选取的100人的样本中,月均用水量不低于3.5吨的居民有100×6%=6人,其中[3.5,4)之间有4人,[4,4.5)之间有2人,从6人中取出3人,共有=20种取法,利用互斥事件分类讨论,3人中在[4,4.5)之间有1人,[3.5,4)之间有2人,共有12种取法,3人中在[4,4.5)之间有2人,[3.5,4)之间有1人,共有4种取法,所以至少选到1名月均用水量不低于4吨的居民的概率为:p==.18.如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【考点】余弦定理的应用.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.19.如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,BC=,F为BE的中点.(1)若CE=2,求证:①DF∥平面ABC;②平面BDE⊥平面BCE;(2)若二面角E﹣AB﹣C为45°,求直线AE与平面BCE所成角.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)①取BC作的中点G,连接GF,GA,证明四边形AGFD为平行四边形得出DF∥AG,故而DF∥平面ABC;②证明AG⊥平面BCE,得出DF⊥平面BCE,于是平面BDE⊥平面BCE;(2)连接AE,则∠EAC=45°,由AG⊥平面BCE得出∠AEG为所求角,利用勾股定理计算AG,AE,即可得出sin∠AEG.【解答】证明:(1)①取BC作的中点G,连接GF,GA,∴GF为三角形BCE的中位线,∴GF∥CE,GF=CE,∵DA⊥平面ABC,EC⊥平面ABC,∴DA∥CE,又DA=CE,∴GF∥AD,GF=AD.∴四边形GFDA为平行四边形,∴AG∥FD,又GA⊂平面ABC,DF⊄平面ABC,∴DF∥平面ABC.②∵AB=AC,G为BC的中点,∴AG⊥BC,∵CE⊥平面ABC,CE⊂平面BCE,∴平面BCE⊥平面ABC,又平面BCE∩平面ABC=BC,AG⊂平面ABC,∴AG⊥平面BCE,∵AG∥FD,∴FD⊥平面BCE,又FD⊂平面BDE,∴平面BDE⊥平面BCE.(2)连接AE.∵AD⊥平面ABC,AB⊂平面ABC,∴AD⊥AB,∵AB=AC=1,BC=,∴AC⊥AB,又AC⊂平面ACE,AD⊂平面ACE,AC∩AD=A,∴AB⊥平面ACE,又AE⊂平面ACE,∴AB⊥AE,∴E﹣AB﹣C的平面角为∠EAC=45°,∴CE=AC=1;由(1)可知AG⊥平面BCE,∴直线AE与平面BCE所成角为∠AEG.∵AB=AC=1,AB⊥AC,∴AG=BC=,AE==,∴,∴∠AEG=30°.20.设数列{a n}的前n项和为S n,已知a1=1,2S n=(n+1)a n,n∈N*.(1)求数列{a n}的通项公式;(2)令b n=,数列{b n}的前n项和为T n,试比较T n与的大小.【考点】数列的求和;数列递推式.【分析】(1)由2S n=(n+1)a n,当n≥2,2S n﹣1=na n﹣1,两式相减可知:,即,a n=n;(2)由(1)可知:,采用“裂项法”即可求得数列{b n}的前n项和为T n,即可比较T n与的大小.【解答】解:(1)∵,∴,两式相减得:,…∴(n≥2,且n∈N*),又,∴,∴a n=n…(2)由(1)可得…∴,=…21.如图,已知直线l:y=x+4,圆O:x2+y2=3,直线m∥l.(1)若直线m与圆O相交,求直线m纵截距b的取值范围;(2)设直线m与圆O相交于C、D两点,且A、B为直线l上两点,如图所示,若四边形ABCD是一个内角为60°的菱形,求直线m纵截距b的值.【考点】圆方程的综合应用;直线与圆的位置关系.【分析】(1)利用m∥l,求出直线l;设直线m的方程,利用设圆心O到直线m的距离为d,通过直线m与圆O相交,求解即可.(2)求出CD,利用AB与CD之间的距离,结合求解即可.【解答】解:(1)∵m∥l,直线,∴可设直线,即,设圆心O到直线m的距离为d,又因为直线m与圆O相交,∴,…即,∴…(2)由,①…AB与CD之间的距离,②…又③…联立①②③得到:b2﹣2b﹣5=0,又,解得:或…22.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b的定义域为[0,1].(Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;(Ⅱ)记f(x)的最大值为M,证明:f(x)+M>0.【考点】二次函数的性质.【分析】(1)由题意可得f(0)≥0,f(1)≥0,△>0,0<<1,解不等式即可得到所求范围;(2)求出对称轴,讨论对称轴和区间[0,1]的关系,可得最值,即可证明f(x)+M>0.【解答】解:(1)由题意可得f(x)=4x2﹣2bx﹣1+b在[0,1]内有两个不同的零点,即有,解得1≤b<2或2<b≤3;(2)记f(x)的最大值为M,证明:f(x)+M>0.只需证明f(x)最小值+M>0即可,设f(x)的最小值是m,问题转化为证明M+m>0,证明如下:f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得M=f(0)=b﹣a,m=f(1)=3a﹣b,则M+m=2a>0;当<0时,区间[0,1]为增区间,可得m=f(0)=b﹣a,M=f(1)=3a﹣b,则M+m=2a>0;当0≤≤1时,区间[0,]为减区间,[,1]为增区间,可得m=f()=,若f(0)≤f(1),即b≤2a,可得M=f(1)=3a﹣b,M+m=≥=a>0;若f(0)>f(1),即2a<b≤4a,可得M=f(0)=b﹣a,M+m==,由于2a<b≤4a,可得M+m∈(a,2a],即为M+m>0.综上可得:f(x)max+f(x)min>0恒成立,即f(x)+M>0.2016年12月17日。
江南十校2016届新高三摸底联考卷理科数学本试卷分第I(选择题)和第II卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第I卷(选择题共60分)一、选择题(本大题共12小题.每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知集合A={x||2x十|<3},B={x|1},则A∩B=()A.{x|一2<x ≤1 }B. {x|一1≤x<1}C. {x|-1≤x≤1}D. {x|-2<x≤1}(2)设复数z的共扼复数为,若z +=4,z·=5,且复数z在复平面上表示的点在第四象限,则z=()A. 2一B.一2iC.1一2iD.2一i(3)与函数有相同值域的函数是(4)已知图中阴影部分的面积为正整n,则二项式的展开式中的常数项为A. 240B.一240C. 60D.一60(5)平移函数y=|sinx|的图象得到函数y=|cosx|的图象,以下平移方法错误的是A.向左或向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左或向右平移个单位(6)在正方体ABCD一A1 B1C1D1中,四对异面直线,AC与A1D,BD1与AD,A1C 与AD1,BC与AD1,其中所成角不小于60°的异面直线有()A.4对B. 3对C. 2对D. 1对(7)已知中心在坐标原点的椭圆和双曲线的焦点相同,左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,且△PF1F2是以PF1为斜边的等腰直角三角形,则椭圆和双曲线的离心率之积为()A.1 B.2+3 C.2 D. 3一2(8)数列中的最大项是A.第11项B.第12项C.第13项D.第14项(9)若R)是偶函数,且f(1一m)<f(m),则实数m的取值范围是()(10)定义两个互相垂直的单位向量为“一对单位正交向量”,设平面向量a i (i=1,2,3,4)满足条件:,则() C. a i (i=1,2,3,4)中任意两个都是一对单位正交向量 D. a 1,a4是一对单位正交向量(11)设Z是整数集,实数x,y满足,若使得z=ax + y取到最大值的点(x, y)有且仅有两个,则实数a的值是()A.5B.一5C.1D.一1(12)已知函数的图象与函数1)的图象有一个交点,则实数a的取值范围是()第II卷(非选择题共90分)二、填空题(本大题共4小题.每小题5分.共20分.把答案坡在答题卡的相应位置)(13)执行如图所示的程序框图,则箱出的s的值为___(14)已知某几何体的三视图如图所示,其中俯视图是一个边长为2的正方形切去了四个以顶点为圆心1为半径的四分之一圆,则该几何体的表面积为 (15)柳家为家里的小朋友萌萌订了一份鲜奶,牛奶公司的员工可能在早上6:30一7:30之间将鲜奶送到他家,萌萌早上上学的时间在7:00一7:40之间,则萌萌在上学前能得到鲜奶的概率为 (16)如图是函数的部分图象,P、Q分别为该图象的最高点和最低点,R是该图象与x轴的一个交点,且PR⊥QR,△PQR的面积为2,则函数f(x)的最小正周期为_ .三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步卑)(17)(本小题满分12分)已知函数.(I)若函数f (x)的图象在点(2,f(2))处的切线方程为x+y一1 =0,求a,b 的值;(II)若函数f(x)在区间〔2,+co)上单调递增,求实数a的取值范围.(18)(本小题满分12分)如图,在七面体ABCDEFGH中,底面ABCDEF是边长为2的正六边形,AG=DH=3,且AG,DH都与底面ABCDEF垂直.(I)求证:平面ABG//平面DEH;(II)平面BCHG与平面DEH所成二面角的正弦值。
安徽省示范高中2016届高三数学第一次联考试题理(扫描版)2016届安徽省示范高中高三第一次联考理数参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】因为错误!未找到引用源。
,错误!未找到引用源。
,所以错误!未找到引用源。
.2.A 【解析】错误!未找到引用源。
,因为复数在第一象限,所以错误!未找到引用源。
,解得错误!未找到引用源。
,故选A.3.B 【解析】全称命题的否定,要把量词任意改为存在,且否定结论,故非错误!未找到引用源。
为:存在错误!未找到引用源。
,错误!未找到引用源。
.4. C 【解析】根据题意,三角形F1F2P是以F1F2为斜边的直角三角形,设|F2P|=m,|F1P|=2m,则由双曲线定义可得m=2a,所以错误!未找到引用源。
,即错误!未找到引用源。
,则错误!未找到引用源。
,故一条渐近线方程是错误!未找到引用源。
.5.D 【解析】由题意知错误!未找到引用源。
,所以错误!未找到引用源。
,故选D.6.A 【解析】二项式错误!未找到引用源。
的通项公式为错误!未找到引用源。
,其中错误!未找到引用源。
,所以错误!未找到引用源。
,解得错误!未找到引用源。
.7.B【解析】可行域为错误!未找到引用源。
及其内部,三个顶点分别为错误!未找到引用源。
,当错误!未找到引用源。
过点错误!未找到引用源。
时取得最小值,此时错误!未找到引用源。
.8. C 【解析】由三视图的俯视图、正视图和侧视图可还原的空间几何体一个四棱锥M-ABCD,如图所示,由勾股定理计算CD=5,即知底面是边长为5的正方形ABCD,补形为三棱柱,则所求的几何体的体积:错误!未找到引用源。
×3×4×5-错误!未找到引用源。
=20.9.C 【解析】由流程图可知,错误!未找到引用源。
,只要错误!未找到引用源。
,就再一次进入循环体循环,直到首次出现错误!未找到引用源。
参考答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符二、填空题(本大题共5小题,每小题5分,共25分). 11. (-1,1] 12.. 13. 14. 15. ① ③三、解答题(本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤,并在答题卡的制定区域内答题.) 16. 解:(1)∵T =2×(5π6-π3)=π,∴ω=2ππ=2.又点(π3,0)是f (x )=sin(2x +φ)的一个对称中心,∴2×π3+φ=k π,k ∈Z ,φ=k π-2π3令k =1,得φ=π3.y =sin(2x +π3)(2)2,2,3x k k k Z πππ⎡⎤∈-∈⎢⎥⎣⎦17.(1)令,()()22[2]2f x f xx x x x =--=---=+. ∴,∴. (2)在[-1,1]上递增,∴, ∴,.1181()sin()62f x x π=-+、解:(),∴;又∵,∴,即3cos cos[()]cos()cos sin()sin 66666610x x x x ππππππ∴=-+=---=-22bcosA 2c 2sin cos 2sin 2sin cos 2sin()2sin cos 2[sin cos cos sin ]2sin cos cos (0,]6B A c A B A A B AB A A B A B A A B A B B π≤≤⇒≤+⇒≤+-⇒≥⇒≥⇒∈()由-得:∴,即11()sin()()(0,]622f B B f B π=-+⇒∈19.解:(1)设B 类型汽车的价值为万元,顾客得到的油费为万元, 则A 类型汽车的价值为万元,由题意得,11(10)ln(1)ln(1)11010y x m x m m x =-++=+-+,(), (2)由1,0110m y y x ''=-=+得得 ①当1011,00.2m m -≤<≤即时,是减函数随B 类型汽车投放金额万元的增加,顾客得到的油费逐渐减少。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a≥1或a≤-1B. -1<a<1C. a>1或a<-1D. -1≤a≤12. 若向量a=(1,2),向量b=(3,-1),则向量a与向量b的点积是()A. -5B. 5C. 0D. -23. 已知函数f(x) = x^2 + 2x + 3,若f(x)的图像关于y轴对称,则f(x)的对称轴是()A. x=-1B. x=1C. y=1D. y=-14. 已知数列{an}的通项公式为an = 3n - 1,则数列{an}的前n项和S_n是()A. S_n = 3n^2 - nB. S_n = 3n^2 - 2nC. S_n = 3n^2 - n^2D. S_n = 3n^2 - 2n^25. 若直线l的斜率为k,则直线l与x轴的夹角θ的余弦值是()A. |k|B. 1/|k|C. |k|/√(1+k^2)D. √(1+k^2)/|k|6. 已知等差数列{an}的公差为d,若a1 = 2,a5 = 12,则d的值为()A. 2B. 4C. 6D. 87. 若复数z满足|z-2|+|z+1|=5,则复数z所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知函数f(x) = e^x - x,若f(x)在区间(0, +∞)上单调递增,则f(x)的极小值点为()A. x=0B. x=1C. x=eD. x=e^29. 若直线l的方程为y = mx + b,且直线l与圆(x-1)^2 + (y-2)^2 = 1相切,则m和b的关系是()A. m^2 = 4bB. m^2 = bC. m^2 = 4b^2D. m^2 = b^210. 已知函数f(x) = ln(x+1) - x,若f(x)在区间(0, +∞)上单调递减,则f(x)的极值点为()A. x=0B. x=1C. x=eD. x=e^2二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = x^2 - 4x + 3在区间[1, 3]上的最大值为4,则函数f(x)在区间[3, 5]上的最小值为______。
“江淮十校”2016届高三第一次联考·理科数学参考答案及评分标准1.C2.C3.A4. A5. A 6 B 7. D 8. B 9.B 10. B11.31n - 12.16.(1)圆x 2+y 2-4x +2y -3=0化为标准方程为(x -2)2+(y +1)2=8,圆心为P (2,-1),半径r =22. (4分)(2)①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0.设AB 的中点为N ,则|PN |=|2k +1-4k -8|k 2+1=|2k +7|k 2+1,由|PN |2+22AB =r 2,得k =-4528,此时AB 的直线方程为45x +28y +44=0. (7分)②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0,解得y 1=1,y 2=-3,符合题意. (10分) 综上,直线AB 的方程为45x +28y +44=0或x = 4. (12分)17.21()cos (cos cossin sin )cos 23324f x x x x x x ππ==-11cos(2)234x π=++. (1)T π=; (4分)(2)111()cos(2),cos(2)123443f C C C ππ=++=-∴+=-. 又72333C πππ<+<,则23C ππ+=..3C π∴=1sin 8.2, 4.2ABC S ab C ab a b =====∴= (10分)由余弦定理得2222cos 12,c a b ab C c =+-=∴= (12分)18.(1)由频率分布表得a+0.3+0.35+b+c=1,即a+b+c=0.35. (2分)∵抽取的20件产品中,等级编号为4的恰有2件,∴b==0.1.(4分)等级编号为5的恰有4件,∴c==0.2. ∴a=0.35﹣b ﹣c=0.05.故a=0.05,b=0.10,c=0.20. (6分)(2)解法一:从产品x 1,x 2,y 1,y 2,y 3,y 4中任取两件,所有可能的结果为:{x 1,x 2},{x 1,y 1},{x 1,y 2},{x 1,y 3},{x 1,y 4},{x 2,y 1},{x 2,y 2},{x 2,y 3}, {x 2,y 4},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共15个. (8分)设A 表示“从x 1、x 2,y 1,y 2,y 3,y 4,这6件产品中任取两件这两件产品的等级编号恰好相同”,则A 包含的基本事件为:{x 1,x 2},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共7个. (10分)故所求概率为:p=. (12分) 解法二:222426715C C p C +==。
“江淮十校”2017-2018学年高三第一次联考数 学(理科)考生注意:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
2.考生作答时,请将答案写在答题卡上。
必须在题号所指示的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
3.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题号的题目涂黑。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题满分5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.若将集合{}4321,,,=A ,{})3(log 2x y x B -==,则=B A ( ) A.{}21, B.{}321,, C,{}4,3,2,1 D.{}42.如果一根无弹性绳子的长度为3米,拉直后在任意位置剪断,那么剪得两段的长都不小于的1米的概率是( ) A.32 B.31 C.41D.不能确定 3.将函数x y 2sin =的图像向左平移6π个单位,再向上平移1个单位,所得图像的函数解析式是( ) A.1)62sin(++=πx y B.1-)6-2sin(πx y =C.1)32sin(++=πx yD.1)32sin(--=πx y4.一个几何体的三视图如下图所示,则该几何体的体积为( )A.34π B.35πC.π2D.32+π5.执行下面的程序框图,若8.0=p ,则输出的=n ( )A.3 B,4 C.5 D.66.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥=+-=-+10103y y x y x ,则x y x z 2+=的最小值是( )A.0B.1C.2D.37.已知{}n a 为等差数列,156531=++a a a ,147642=++a a a ,{}n a 的前n 项和为n S ,则使得n S 达到最大值时n 是( )A.19B.20C.21D.22 8.设n m 、是两条不同的直线,βα、是两个不同的平面,有下列四个:①如果βα//,α⊂m ,那么β//m ②如果α⊥m ,αβ⊥,那么β//m③如果n m ⊥,α⊥m ,那么βα⊥ ④如果β//m ,α⊂m ,n =⋂βα,那么n m //其中正确的是( )A.①②B.①③C.①④D.③④ 9.已知函数⎩⎨⎧≥+-++=1,221,1)1()(2x ax x x x a x f <是R 上的增函数,则实数a 的取值范围是( )A.11-<<a B,11-≤a < C.311-<<a D.311-≤a < 10.设0>>b a ,1=+b a ,且bax )1(=,ab y ab1log =,a z b1log =,则z y x ,,的大小关系是( )A.x z y <<B.x y z << C,z y x << D,z x y << 11.已知B A 、是球O 的球面上两点,且∠A0B=120°,C 为球面上的动点,若三棱锥O-ABC 体积最大值为332,则球O 的表面积为( ) A.π4 B.π332C.π16D.π32 12.设函数)(x f 、)(x g 分别是定义在R 上的奇函数和偶函数,且xx g x f 2)()(=+,若对[]2,1∈x ,不等式0)()(≥+x g x af 恒成立,则实数a 的取值范围是( )A.[)∞+,1-B.[)∞+,22- C. ⎪⎭⎫⎢⎣⎡∞+,617- D.⎪⎭⎫⎢⎣⎡∞+,60257-第II 卷(非选题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2015秋•安徽期末)已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,) B.()C.(0,1)D.∅2.(5分)(2015秋•安徽期末)已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5分)(2015秋•安徽期末)下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件4.(5分)(2015秋•安徽期末)截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.55.(5分)(2015秋•安徽期末)将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x ﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.6.(5分)(2015秋•安徽期末)某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.7.(5分)(2015秋•安徽期末)已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣8.(5分)(2015秋•安徽期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.9.(5分)(2015秋•安徽期末)已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.10.(5分)(2015秋•安徽期末)若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=111.(5分)(2015秋•安徽期末)一个三棱锥的三视图如图所示,则它的体积为()A.B.1 C.D.212.(5分)(2015秋•安徽期末)函数f(x)=1+x﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为()A.1 B.2 C.3 D.4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.(5分)(2015秋•安徽期末)已知(+)5的展开式中的常数项为80,则x的系数为.14.(5分)(2015秋•安徽期末)已知正数x,y满足2x+y=1,则4x2+y2+的最小值为.15.(5分)(2015秋•安徽期末)若对于任意实数t,圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1都没有公共点,则实数a的取值范围是.16.(5分)(2015秋•安徽期末)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g(x)=3[f(x)]3﹣4f(x)+m在x上有4个不同的零点,则实数m的取值范围是.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.(12分)(2015秋•安徽期末)已知在各项均为正数的等比数列{a n}中,a1=2,且2a1,a3,3a2成等差数列.(Ⅰ)求等比数列{a n}的通项公式;(Ⅱ)若c n=a n•(),n=1,2,3,…,且数列{c n}为单调递减数列,求λ的取值范围.18.(12分)(2015秋•安徽期末)从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.19.(12分)(2015秋•安徽期末)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.20.(12分)(2015秋•安徽期末)已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.21.(12分)(2015秋•安徽期末)已知函数f(x)=e﹣ax2(其中e是自然对数的底数).(Ⅰ)判断函数f(x)的奇偶性;(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f()<n!x﹣n.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.(10分)(2015秋•安徽期末)已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.选修4-4:坐标系与参数方程23.(2015秋•安徽期末)已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.选修4-5:不等式选讲24.(2015秋•安徽期末)设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2015秋•安徽期末)已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,) B.()C.(0,1)D.∅【分析】利用函数的单调性可得:A=[0,+∞),B=,即可得出A∩B.【解答】解:A={y|y=x}=[0,+∞),B={y|y=()x,x>1}=,则A∩B=,故选:A.【点评】本题考查了函数的单调性、集合的运算性质,考查了推理能力与计算能力,属于中档题.2.(5分)(2015秋•安徽期末)已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】利用复数单位的幂运算,然后利用复数的乘法的运算法则化简求解即可.【解答】解:复数z满足z•(1+i2015)=i2016,可得z(1﹣i)=1,可得z===.对应点的坐标().故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.3.(5分)(2015秋•安徽期末)下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件【分析】根据含有量词的命题的定义进行判断即可.【解答】解:A.若x=3,则23=8,32=9,此时2x>x2不成立,故A错误,B.∵∀x∈R,e x>0,∴∃x0∈R,e≤0不成立,故B错误,C.当c=0,当a>b时,“ac2>bc2”不成立,即“a>b“是“ac2>bc2”的充要条件错误,故C错误,D.当a>1,b>1时,ab>1成立,即“ab>1”是“a>1,b>1”的必要条件成立,故D正确,故选:D【点评】本题主要考查含有量词的命题的判断,根据特称命题和全称命题的定义是解决本题的关键.4.(5分)(2015秋•安徽期末)截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.5【分析】模拟执行程序框图,得到程序的功能,由茎叶图写出所有的数据,计算得分超过20分(不包括20分)的场数即可得解.【解答】解:模拟执行程序框图,可得其功能是计算得分超过20分(不包括20分)的场数,有茎叶图知,各场得分的数据为:14,17,27,21,28,20,26,26,31,44,∴根据茎叶图可知得分超过20分(不包括20分)的场数有7场.故选:B.【点评】解决茎叶图问题,关键是能由茎叶图得到各个数据,再利用公式求出所求的值.5.(5分)(2015秋•安徽期末)将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x ﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.【分析】由和差角的公式化简可得y=2cos2(x﹣),由三角函数图象变换的规则可得.【解答】解:∵y=cos2x﹣sin2x=2cos(2x+)=2cos(2x﹣)=2cos2(x﹣),∴φ的一个可能取值为.故选:D.【点评】本题考查两角和与差的三角函数公式,涉及三角函数图象的变换,属基础题.6.(5分)(2015秋•安徽期末)某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有24﹣2=14种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有2×2=4种,∴P==.故选:B.【点评】本题考查了古典概型的概率计算,是基础题.7.(5分)(2015秋•安徽期末)已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣【分析】由约束条件作出可行域,由题意可知,直线y=x+z经过可行域,且在y轴上的截距的最小值为﹣4时,直线kx﹣y+2过点(4,0),由此求得k的值.【解答】解:如图,由题意可知,直线y=x+z经过可行域,且在y轴上的截距的最小值为﹣4.∴直线kx﹣y+2过点(4,0),从而可得k=.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)(2015秋•安徽期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.【分析】由已知及余弦定理可得cosA=,解得A=,由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:∵a2=b2+c2﹣bc,∴由余弦定理可得:cosA==,A为三角形内角,解得A=,∵a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S△ABC=bcsinA=bc≤.故选:C.【点评】本题主要考查了余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想和计算能力,属于中档题.9.(5分)(2015秋•安徽期末)已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.【分析】通过=n(n∈N*)可知=+,与=x+y比较可得x=,进而计算可得结论.【解答】解:∵=n(n∈N*),∴=+,又∵=x+y,∴x=,∴数列{(n+1)x}是首项、公差均为1的等差数列,∴则数列{(n+1)x}的前n项和为,故选:C.【点评】本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.10.(5分)(2015秋•安徽期末)若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=1【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,利用抛物线C1:y=x2的焦点F 到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,可得=,再利用抛物线的定义,结合抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,可得c2+1=5,从而可求双曲线的几何量,可得结论.【解答】解:抛物线C1:y=x2的焦点F(0,1),双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为bx﹣ay=0,∵抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,∴=,∵直线y=﹣1是抛物线的准线,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,∴根据抛物线的定义可知,当P,F及双曲线C2的一个焦点三点共线时最小,∴c2+1=5,∴c=2,∵c2=a2+b2,∴b=,a=1,∴双曲线的方程为x2﹣=1.故选:B.【点评】本题主要考查了抛物线、双曲线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.11.(5分)(2015秋•安徽期末)一个三棱锥的三视图如图所示,则它的体积为()A.B.1 C.D.2【分析】由三视图可知该三棱锥为棱长为2的正方体切割得到的,作出图形,结合图形代入体积公式计算.【解答】解:由三视图可知该三棱锥为棱长为2的正方体切割得到的.即三棱锥A1﹣MCD.∴V=××2×2×2=.故选C.【点评】本题考查了常见几何体的三视图和体积计算,属于基础题.12.(5分)(2015秋•安徽期末)函数f(x)=1+x﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为()A.1 B.2 C.3 D.4【分析】求导f′(x)=1﹣x+x2﹣x3+…+x2014﹣x2015,分类讨论以确定f(x)的单调性,从而确定函数的极值的正负,从而利用函数的零点判定定理判断即可.【解答】解:∵f(x)=1+x﹣+﹣+…+﹣,∴f′(x)=1﹣x+x2﹣x3+…+x2014﹣x2015,当x=﹣1时,f′(x)=2016>0,当x≠﹣1时,f′(x)=,故当﹣2<x<﹣1或﹣1<x<1时,f′(x)>0;当1<x<2时,f′(x)<0;故f(x)在[﹣2,1]上单调递增,在(1,2]上单调递减,又∵f(﹣2)<0,f(1)>0,f(2)<0,∴f(x)在(﹣2,1)和(1,2)内各有一个零点,故选:B.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了零点的判定定理的应用.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.(5分)(2015秋•安徽期末)已知(+)5的展开式中的常数项为80,则x的系数为40.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于80求得实数a的值,从而求得x的系数.【解答】解:∵(+)5的展开式中的通项公式为T r+1=•a r•,令=0,求得r=3,即常数项为•a3=80,求得a=2.故展开式中的通项公式为T r+1=•2r•,令r=2,可得则x的系数为40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.(5分)(2015秋•安徽期末)已知正数x,y满足2x+y=1,则4x2+y2+的最小值为.【分析】由基本不等式可得0<xy≤,令t=xy,0<t≤,由4t﹣在0<t≤递增,可得最小值.【解答】解:正数x,y满足2x+y=1,可得2x+y≥2,即有0<xy≤,则4x2+y2+=(2x+y)2﹣4xy+=1﹣(4xy﹣),令t=xy,0<t≤,由4t﹣在0<t≤递增,可得t=时,4t﹣取得最大值,且为﹣,则4x2+y2+在xy=时,取得最小值,且为1+=.故答案为:.【点评】本题考查基本不等式的运用:求最值,同时考查配方法和函数的单调性的运用,考查运算能力,属于中档题.15.(5分)(2015秋•安徽期末)若对于任意实数t,圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1都没有公共点,则实数a的取值范围是a<﹣或a>0.【分析】通过两个圆的方程求出两个圆的圆心与半径,利用圆心距与半径和与差的关系即可求解.【解答】解:圆C2:(x﹣t)2+(y﹣at+2)2=1的圆心在直线y=ax﹣2上,∴要使圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1没有公共点,必须使圆心C1(﹣4,0)到直线y=ax﹣2的距离大于两圆半径之和,即d=>2,∴a<﹣或a>0.故答案为:a<﹣或a>0.【点评】本题考查两个圆的位置关系的应用,考查转化思想,计算能力,属于中档题.16.(5分)(2015秋•安徽期末)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g(x)=3[f(x)]3﹣4f(x)+m在x上有4个不同的零点,则实数m的取值范围是[,).【分析】利用由y=Asin(ωx+φ)的部分图象可求得A,T,从而可得ω,又曲线经过(,0),|φ|<,可得φ的值,从而可求函数f(x)的解析式,将函数进行换元,转化为一元二次函数问题,由导数求出单调区间,结合函数f(x)的图象,即可确定m的取值范围.【解答】解:由图知T=4(﹣)=2π,∴ω=1,∴f(x)=sin(x+φ),∵f()=0,∴+φ=kπ,k∈Z.∴φ=kπ﹣,k∈Z.又|φ|≤,∴φ=,∴函数f(x)的解析式为:f(x)=sin(x+).由f(x)的图象可知,对于f(x)∈[,1)上的每一个值,对应着[﹣,]上的两个x值,又g(x)=3[f(x)]3﹣4f(x)+m=0,⇔m=﹣3[f(x)]3+4f(x)有4个不同的零点,令f(x)=t,则m=﹣3t3+4t.∵m′=﹣9t2+4=﹣9(t+)(t﹣),∴m=﹣3t3+4t在[,]上单调递增,在[,1]上单调递减,而当t=时,m=;当t=时,m=;当t=1时,m=1,结合图象可知,对于m∈[,)上的每一个值,对应着t=f(x)∈[,1)上的两个值,进而对应着[﹣,]上的4个x值.故答案为:[,).【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求φ的值是关键,也是难点,考查识图与运算求解能力,此外还考查了复合函数零点的个数,一元二次方程的实根分布,以及换元法和数形结合法的解题思想,属于基本知识的考查.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.(12分)(2015秋•安徽期末)已知在各项均为正数的等比数列{a n}中,a1=2,且2a1,a3,3a2成等差数列.(Ⅰ)求等比数列{a n}的通项公式;(Ⅱ)若c n=a n•(),n=1,2,3,…,且数列{c n}为单调递减数列,求λ的取值范围.【分析】(Ⅰ)设等比数列的公比为q(q>0),由等差数列的中项性质和等比数列的通项公式,解方程可得q=2,进而得到所求通项;(Ⅱ)把数列{a n}的通项公式a n代入c n=2n•(﹣λ),由c n+1﹣c n分离λ后,求出﹣的最大值得答案.【解答】解:(Ⅰ)设等比数列的公比为q(q>0),由2a1,a3,3a2成等差数列,可得2a3=2a1+3a2,即为2a1q2=2a1+3a1q,可得2q2﹣3q﹣2=0,解得q=2(﹣舍去),则a n=a1q n﹣1=2n;(Ⅱ)c n=a n•()=2n•(),由数列{c n}为单调递减数列,可得则c n+1﹣c n=2n+1•(﹣λ)﹣2n•()=2n•(﹣﹣λ)<0对一切n∈N*恒成立,即﹣﹣λ<0,即λ>﹣==,当n=1或2时,n+取得最小值,且为3,则﹣的最大值为=,即有λ>.即λ的取值范围是(,+∞).【点评】本题考查了等差数列和等比数列的通项公式和前n项和,考查了数列的函数特性,训练了分离变量法求参数的取值范围,是中档题.18.(12分)(2015秋•安徽期末)从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.【分析】(Ⅰ)根据频率分布直方图,计算数据的平均值是各小矩形底边中点与对应的频率乘积的和;(Ⅱ)首先分别求质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,然后求出X=0、1、2时的概率,进而求出X的分布列及数学期望即可.【解答】解:(Ⅰ)由频率分布直方图可知,这40件样本该项质量指标的平均数=162.5×0.05+167.5×0.125+172.5×0.35+177.5×0.325+182.5×0.1+187.5×0.05=174.75cm;(Ⅱ)由频率分布直方图可知,质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,∴X的可能值为:0,1,2;P(X=0)==,P(X=1)==,P(X=2)==,数学期望E(X)=0×+1×+2×=.【点评】本题主要考查了频率分布直方图的应用问题,考查了分布列以及数学期望,解答此题的关键是要熟练掌握利用频率分布直方图,计算数据的平均值的方法.19.(12分)(2015秋•安徽期末)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.【分析】(Ⅰ)取PA的中点F,连接DF,EF,由已知结合三角形中位线定理可得四边形DFEC是平行四边形,从而得到CE∥DF.再由线面平行的判定得答案;(Ⅱ)由题意证明OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.求出所用点的坐标,求得的坐标,再求出底面ABCD的一个法向量,则AE与底面ABCD所成角的正弦值可求;(Ⅲ)分别求出平面APD与平面PCD的一个法向量,求出两法向量所成角的余弦值,则二面角A﹣PD﹣C的正弦值可求.【解答】解:(Ⅰ)当E为PB的中点时,CE∥平面PAD.证明如下:取PA的中点F,连接DF,EF,则EF∥,.由已知CD,CD=,则EF∥CD,EF=CD.∴四边形DFEC是平行四边形,∴CE∥DF.又CE⊄平面PAD,DF⊂平面PAD,∴CE∥平面PAD;(Ⅱ)取AD中点O,AB的中点G,连接OP,OG,∵PA=PD,∴PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD.由已知可得AD2+BD2=AB2,∴BD⊥AD,又OG∥BD,∴OG⊥AD,∴OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.A(),P(0,0,),B(),E(),D(),C(,,0).∴,是平面ABCD的一个法向量,设AE与底面ABCD所成角为θ,则sinθ=|cos|==;(Ⅲ)平面APD的一个法向量为,,=(,,﹣).再设平面PCD的一个法向量为,由,得,取z=1,则x=﹣1,y=﹣1,∴.∴二面角A﹣PD﹣C的余弦值的绝对值为=.∴二面角A﹣PD﹣C的正弦值为.【点评】本题考查平面与平面垂直的性质,考查了利用空间向量求线面角和面面角,考查空间想象能力和思维能力,是中档题.20.(12分)(2015秋•安徽期末)已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.【分析】(Ⅰ)根据e=,2a+2c=8+4,求解即可;(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),求出的坐标,然后求的值即可;(Ⅲ)先把四边形MF1NF2面积表示出来,然后求其最小值即可.【解答】解:(Ⅰ)∵e=,2a+2c=8+4,∴a=4,c=2,∴b=2,故椭圆的方程为:(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣4,0),∴直线PA的方程为y=,∴M(0,).同理,直线QA的方程为,∴N(0,),又F1(﹣2,0),∴,,∴=12+(Ⅲ)|MN|=||=||=||=|,∴四边形MF1NF2的面积S==,∵|y0|∈(0,2],∴当y0=±2时,S有最小值8.【点评】本题主要考查椭圆的标准方程,向量的数量积以及四边形的面积,属于中等题.21.(12分)(2015秋•安徽期末)已知函数f(x)=e﹣ax2(其中e是自然对数的底数).(Ⅰ)判断函数f(x)的奇偶性;(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f()<n!x﹣n.【分析】(Ⅰ)利用定义判断,先判断定义域关于原点对称,再判断f(﹣x)=f(x);(Ⅱ)不等式可整理为a≥恒成立,只需求出右式的最大值即可,利用构造函数令g(x)=,求出导函数g'(x)=﹣(2x+1),得出函数的单调性,求出最大值;(Ⅲ)若a=0,f(x)=,得出x n<n!e x,利用数学归纳法证明不等式对一切n∈N*都成立即可.【解答】解:(Ⅰ)函数定义域为(﹣∞,0)∪(0,+∞)关于原点对称,∵f(﹣x)=f(x),∴函数f(x)为偶函数;(Ⅱ)由偶函数性质可知,只需求当x∈(﹣∞,0)时,f(x)=﹣ax2≤0恒成立,∴a≥恒成立,令g(x)=,g'(x)=﹣(2x+1),当x∈(﹣∞,)时,g'(x)>0,g(x)递增,当x∈(,0)时,g'(x)<0,g(x)递减,∴g(x)的最大值为g(﹣)=4e﹣2,∴a≥4e﹣2,(Ⅲ)若a=0,f(x)=e,当x>0时,f(x)=,f()=e﹣x<n!x﹣n.∴x n<n!e x,(i)当n=1时,设g(x)=e x﹣x,(x>0),∵x>0时,g'(x)=e x﹣1>0,∴g(x)是增函数,故g(x)>g(0)=1>0,即e x>x,(x>0)所以,当n=1时,不等式成立(ii)假设n=k(k∈N*)时,不等式成立,即x k<k!•e x当n=k+1时设h(x)=(k+1)!•e x﹣x k+1,(x>0)有h'(x)=(k+1)!•e x﹣(k+1)x k=(k+1)(k!•e x﹣x k)>0故h(x)=(k+1)!•e x﹣x k+1,(x>0)为增函数,所以,h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!•e x,这说明当n=k+1时不等式也成立,根据(i)(ii)可知不等式对一切n∈N*都成立,故原不等式对一切n∈N*都成立.【点评】考查了偶函数的判定,恒成立问题的转换和数学归纳法的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.(10分)(2015秋•安徽期末)已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.【分析】(Ⅰ)证明B,C,T,F四点共圆,可得∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,利用△PBF∽△PTC,△PAE∽△PTC,结合切割线定理,即可证明CT2=AE•BF.【解答】证明:(Ⅰ)∵OT⊥EF,BF⊥AB,∠CTF=∠CBF=90°,∴∠CTF+∠CBF=180°,∴B,C,T,F四点共圆,∴∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,则△PBF∽△PTC,∴=①,△PAE∽△PTC,∴=②①×②=由切割线定理可得PT2=PA•PB,∴CT2=AE•BF.【点评】本题考查切割线定理的运用,考查三角形相似的性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2015秋•安徽期末)已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.【分析】(I)用x,y表示出cosθ,sinθ,根据正余弦的平方和等于1消参数得到普通方程;(II)写出直线l的参数方程,代入曲线的普通方程得到关于参数t的一元二次方程,根据参数的几何意义解出AB.【解答】解:(1)∵(θ为参数),∴cosθ=,sinθ=,∴.∴曲线C的普通方程为.(II)直线l的参数方程为(t为参数).将l的参数方程代入得7t2+22t+14=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=2.∴t1,t2符号相同.∴|AB|=|t1﹣t2|===.【点评】本题考查了参数方程与普通方程的转化,参数方程在求距离中的应用,属于基础题.选修4-5:不等式选讲24.(2015秋•安徽期末)设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.【分析】(Ⅰ)当a=1时,对x分类讨论,去绝对值,分别求出f(x)>3,得解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,对x分类讨论:当x=时,a∈R;当x≠时,||≥a对[﹣1,)∪(,1]恒成立,只需求出左式的最小值即可.利用分离常数法得出=+∈(﹣∞,﹣)∪(4,+∞),进而求出最小值.【解答】解:(Ⅰ)当a=1时,当x<﹣3时,f(x)=x﹣4,f(x)>3,∴无解当﹣3≤x≤时,f(x)=3x+2,f(x)>3,∴<x,当x>时,f(x)=4﹣x,f(x)>3,∴x<1,∴解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,∴|x+3|≥a|2x﹣1|恒成立,当x=时,a∈R,当x≠时,∴||≥a对[﹣1,)∪(,1]恒成立,∵=+∈(﹣∞,﹣)∪(4,+∞),∴||的最小值为,∴a≤.【点评】考查了绝对值函数的求解和恒成立问题的转换.。
2016年安徽省江南十校联考高考数学一模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为()A.2 B.3 C.4 D.52.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.3.“a=0”是“函数f(x)=sinx﹣+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知l是双曲线C:﹣=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若•=0,则P到x轴的距离为()A.B.C.2 D.5.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.6.在数列{a n}中,a n+1﹣a n=2,S n为{a n}的前n项和.若S10=50,则数列{a n+a n+1}的前10项和为()A.100 B.110 C.120 D.1307.设D是△ABC所在平面内一点,=2,则()A.=﹣B.=﹣C.=﹣D.=﹣8.执行如图所示的程序框图,如果输入的t=50,则输出的n=()A.5 B.6 C.7 D.89.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且对∀x∈R,有f(x)≤f()成立,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)10.若x,y满足约束条件,则z=y﹣x的取值范围为()A.[﹣2,2] B.[﹣,2]C.[﹣1,2] D.[﹣,1]11.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4B.5π+16+4C.4π+16+2D.5π+16+212.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二.填空题:本大题共4小题,每小题5分.13.2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N 的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=.14.(2x﹣y)5的展开式中,x2y3的系数为.15.椭圆C: +=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P、Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为.16.已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2t2≤0成立,则实数t的取值范围为.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°,求(Ⅰ)∠ADB;(Ⅱ)△ADC的面积S.18.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,求二面角A﹣BF﹣D的余弦值.19.第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国38 51 32 28 16俄罗斯24 23 27 32 26(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为,丙猜中国代表团的概率为,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.21.已知函数f(x)=e x+ax2﹣2ax﹣1.(Ⅰ)当a=时,讨论f(x)的单调性;(Ⅱ)设函数g(x)=f′(x),讨论g(x)的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有﹣∞和+∞的区间).四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.2016年安徽省江南十校联考高考数学一模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为()A.2 B.3 C.4 D.5【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,再由B,求出两集合的交集,即可做出判断.【解答】解:由A中不等式变形得:(2x+1)(x﹣3)≤0,解得:﹣≤x≤3,即A={x|﹣≤x≤3},∵B={x∈Z|x≤2}={2,1,0,﹣1,…},∴A∩B={0,1,2},即有3个元素,故选:B.2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.【考点】复数代数形式的混合运算.【分析】z(1﹣i)=|1﹣i|+i,化为z=,再利用复数的运算法则、实部的定义即可得出.【解答】解:∵z(1﹣i)=|1﹣i|+i,∴z===+i,∴z的实部为.故选:A.3.“a=0”是“函数f(x)=sinx﹣+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据奇函数的定义判断出a=0时,为奇函数,再根据奇函数的定义判断当为奇函数时,a=0,故可以判断为充要条件.【解答】解:f(x)的定义域为{x|x≠0},关于原点对称当a=0时,f(x)=sinx﹣,f(﹣x)=sin(﹣x)﹣(﹣)=﹣sinx+=﹣(sinx﹣)=﹣f(x),故f(z)为奇函数,当函数f(x)=sinx﹣+a为奇函数时,f(﹣x)+f(x)=0又f(﹣x)+f(x)=sin(﹣x)﹣(﹣)+a+sinx﹣+a=2a,故a=0所以““a=0”是“函数f(x)=sinx﹣+a为奇函数”的充要条件,故选C4.已知l是双曲线C:﹣=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若•=0,则P到x轴的距离为()A.B.C.2 D.【考点】双曲线的简单性质.【分析】求得双曲线的a,b,c,可得焦点坐标和一条渐近线方程,设P(m,m),运用向量的数量积的坐标表示,解方程可得m,进而求得P到x轴的距离.【解答】解:双曲线C:﹣=1的a=,b=2,c==,即有F1(﹣,0),F2(,0),设渐近线l的方程为y=x,且P(m,m),•=(﹣﹣m,﹣m)•(﹣m,﹣m)=(﹣﹣m)(﹣m)+(﹣m)2=0,化为3m2﹣6=0,解得m=±,则P到x轴的距离为|m|=2.故选:C.5.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.【考点】类比推理.【分析】类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为球的体积的,即可得出结论.【解答】解:类似的,在空间直角坐标系O ﹣xyz 中,满足x 2+y 2+z 2≤1,x ≥0,y ≥0,z ≥0的点P (x ,y )的集合对应的空间几何体的体积为球的体积的,即=,故选:B .6.在数列{a n }中,a n+1﹣a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n+1}的前10项和为( )A .100B .110C .120D .130 【考点】数列的求和.【分析】由数列{a n }中,a n+1﹣a n =2,可得此数列是等差数列,公差为2.数列{a n +a n+1}的前10项和=a 1+a 2+a 2+a 3+…+a 10+a 10+a 11=2S 10+10d ,即可得出. 【解答】解:∵数列{a n }中,a n+1﹣a n =2, ∴此数列是等差数列,公差为2.数列{a n +a n+1}的前10项和为:a 1+a 2+a 2+a 3+…+a 10+a 10+a 11=2(a 1+a 2+…+a 10)+a 11﹣a 1=2S 10+10×2=120, 故选:C .7.设D 是△ABC 所在平面内一点, =2,则( )A .=﹣B .=﹣C .=﹣D .=﹣【考点】向量加减混合运算及其几何意义.【分析】根据平面向量线性运算的几何意义用表示出.【解答】解:,,∴==.故选:D .8.执行如图所示的程序框图,如果输入的t=50,则输出的n=( )A.5 B.6 C.7 D.8【考点】循环结构.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次运行后s=2,a=3,n=1;第二次运行后s=5,a=5,n=2;第三次运行后s=10,a=9,n=3;第四次运行后s=19,a=17,n=4;第五次运行后s=36,a=33,n=5;第六次运行后s=69,a=65,n=6;此时不满足s<t,输出n=6,故选:B.9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且对∀x∈R,有f(x)≤f()成立,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由题意,利用周期公式可求.由f(x)≤f()恒成立,结合范围|φ|<,可求φ=,令=kπ(k∈Z),即可解得f(x)的对称中心,即可得解.【解答】解:由f(x)=sin(ωx+φ)的最小正周期为4π,得.因为f(x)≤f()恒成立,所以f (x ),即+φ=+2k π(k ∈Z ),由|φ|<,得φ=,故f (x )=sin ().令=k π(k ∈Z ),得x=2k π﹣,(k ∈Z ),故f (x )的对称中心为(2k π﹣,0)(k ∈Z ),当k=0时,f (x )的对称中心为(﹣,0),故选:A .10.若x ,y 满足约束条件,则z=y ﹣x 的取值范围为( )A .[﹣2,2]B .[﹣,2]C .[﹣1,2]D .[﹣,1]【考点】简单线性规划.【分析】由题意作平面区域,化简z=y ﹣x 为y=x +z ,从而结合图象求解. 【解答】解:由题意作平面区域如下,化简z=y ﹣x 为y=x +z ,设l :y=x +z , 故结合图象可知,当l 过3x ﹣y=0与x +y ﹣4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y=x 2相切时,z 取得最小值,由,消去y得:x2﹣2x﹣2z=0,由△=4+8z=0,得z=﹣,故﹣≤z≤2,故选B.11.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4B.5π+16+4C.4π+16+2D.5π+16+2【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个正三棱柱和一个半圆柱的组合体,由三视图求出几何元素的长度,由条件和面积公式求出各个面的面积,加起来求出几何体的表面积.【解答】解:由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为=2;半圆柱的侧面积为π×1×4=4π,两个底面面积之和为,所以几何体的表面积为,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,则f(x)极小值设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二.填空题:本大题共4小题,每小题5分.13.2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N 的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=200.【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:由题意可得=,故N=200.故答案为:200.14.(2x﹣y)5的展开式中,x2y3的系数为﹣40.【考点】二项式定理.【分析】T r+1=(2x)5﹣r(﹣y)r,令r=3,即可得出.【解答】解:T r+1=(2x)5﹣r(﹣y)r,令r=3,可得:x2y3的系数为×22×(﹣1)3=﹣40.故答案为:﹣40.15.椭圆C: +=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P、Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】设点P在第一象限,由对称性可得|OP|==,推导出∠POA=60°,P(),由此能求出椭圆的离心率.【解答】解:不妨设点P在第一象限,由对称性可得|OP|==,∵AP⊥PQ,在Rt△POA中,cos∠POA==,∴∠POA=60°,∴P(),代入椭圆方程得:=1,∴a2=5b2=5(a2﹣c2),整理得2a=c,∴离心率e==.故答案为:.16.已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2t2≤0成立,则实数t的取值范围为﹣2<t≤﹣1或≤t<1.【考点】数列与不等式的综合.【分析】由题意求得数列{a n}的通项公式,将原不等式转化成n2﹣tn﹣2t2≤0,构造辅助函数f(x)=n2﹣tn﹣2t2,由题意可知f(1)≤0,f(2)>0,即可求得t的取值范围.=﹣,【解答】解:当n≥2时,a n=S n﹣S n﹣1整理得=,又a1=1,故a n=n,不等式a n2﹣ta n﹣2t2≤0可化为:n2﹣tn﹣2t2≤0,设f(n)=n2﹣tn﹣2t2,由于f(0)=﹣2t2,由题意可得:,解得﹣2<t≤﹣1或≤t<1.故答案为:﹣2<t≤﹣1或≤t<1.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°,求(Ⅰ)∠ADB;(Ⅱ)△ADC的面积S.【考点】解三角形的实际应用.【分析】(I)在△BCD中由正弦定理解出BD,在△ABD中,由余弦定解出cos∠ADB;(II)代入三角形的面积公式计算.【解答】解:(Ⅰ)在△BCD中,由正弦定理得:,即,解得BD=3.在△ABD中,由余弦定理得:cos∠ADB===.∴∠ADB=45°.(Ⅱ)∵∠CBD=30°,∠BCD=120°,∴∠CDB=30°.∴sin∠ADC=sin(45°+30°)=,∴S△ACD=•CDsin∠ADC==.18.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,求二面角A﹣BF﹣D的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.【分析】(Ⅰ)根据线面平行的判定定理即可证明DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,根据二面角平面角的定义作出二面角的平面角,结合三角形的边角关系即可求二面角A﹣BF﹣D的余弦值.【解答】解:(Ⅰ)设AC,BD的交点为O,则O为BD的中点,连接OF,由EF∥BD,EF=BD,得EF∥OD.EF=OD,所以四边形EFOD为平行四边形,故ED∥OF,…又EF⊄平面ACF,OF⊂平面ACF,所以DE∥平面ACF.…(Ⅱ)方法一:因为平面EFBD⊥平面ABCD,交线为BD,AO⊥BD,所以AO⊥平面EFBD,作OM⊥BF于M,连AM,∵AO⊥平面BDEF,∴AO⊥BF,又OM∩AO=O,∴BF⊥平面AOM,∴BF⊥AM,故∠AMO为二面角A﹣BF﹣D的平面角.…取EF中点P,连接OP,因为四边形EFBD为等腰梯形,故OP⊥BD,因为=•OP=3,所以OP=.由PF=,得BF=OF==,因为,所以OM==,故AM==,…所以cos=,故二面角A﹣BF﹣D的余弦值为.…19.第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国38 51 32 28 16俄罗斯24 23 27 32 26(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为,丙猜中国代表团的概率为,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.【考点】离散型随机变量的期望与方差.【分析】(Ⅰ)作出两国代表团获得的金牌数的茎叶图,通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.(Ⅱ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)两国代表团获得的金牌数的茎叶图如下通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.…(Ⅱ)由已知得X的可能取值为0,1,2,3,设事件A、B、C分别表示甲、乙、丙猜中国代表团,则P(X=0)=P()P()P()=(1﹣)2(1﹣)=,P(X=1)==+(1﹣)2×=,P(X=2)==()2(1﹣)+C()(1﹣)()=,P(X=3)=P(A)P(B)P(C)=()2()=,故X的分布列为:X 0 1 2 3P…EX==.…20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段ON的长;(Ⅱ)联立直线和抛物线方程进行削元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=2px经过点M(2,2),得22=4p,故p=1,c的方程为y2=2x …C 在第一象限的图象对应的函数解析式为y=,则′=,故C 在点M 处的切线斜率为,切线的方程为y ﹣2=(x ﹣2), 令y=0得x=﹣2,所以点N 的坐标为(﹣2,0),故线段ON 的长为2 … (Ⅱ)l 2恒过定点(2,0),理由如下:由题意可知l 1的方程为x=﹣2,因为l 2与l 1相交,故m ≠0由l 2:x=my +b ,令x=﹣2,得y=﹣,故E (﹣2,﹣)设A (x 1,y 1),B (x 2,y 2)由消去x 得:y 2﹣2my ﹣2b=0则y 1+y 2=2m ,y 1y 2=﹣2b …直线MA 的斜率为==,同理直线MB 的斜率为,直线ME 的斜率为因为直线MA 、ME 、MB 的斜率依次成等差数列,所以+=2×=1+,即=1+=1+,…整理得:,因为l 2不经过点N ,所以b ≠﹣2 所以2m ﹣b +2=2m ,即b=2故l 2的方程为x=my +2,即l 2恒过定点(2,0)…21.已知函数f (x )=e x +ax 2﹣2ax ﹣1.(Ⅰ)当a=时,讨论f (x )的单调性;(Ⅱ)设函数g (x )=f ′(x ),讨论g (x )的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有﹣∞和+∞的区间).【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(Ⅰ)求得当a=时的f(x)的导数,由导数的单调性,讨论x>0,x<0,即可得到所求单调性;(Ⅱ)由条件可得g(x)=2ax﹣2a,g′(x)=e x+2a,对a讨论:a=0,a>0,分①1﹣2a<0,即a>时,②1﹣2a=0,即a=时,③1﹣2a>0,即0<a<时,a<0,分①ln(﹣2a)﹣2<0,即﹣<a<0时,②ln(﹣2a)﹣2=0,即a=﹣时,③ln(﹣2a)﹣2>0,即a<﹣时,运用导数判断单调性以及函数零点存在定理,即可判断零点的个数.【解答】解:(Ⅰ)当a=时,f′(x)=e x+x﹣1,易知f′(x)在R上单调递增,且f′(0)=0,因此,当x<0时,f′(x)<0;当x>0时,f′(x)>0.故f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)由条件可得g(x)=2ax﹣2a,g′(x)=e x+2a,(i)当a=0时,g(x)=e x>0,g(x)无零点;(ii)当a>0时,g′(x)>0,g(x)在R上单调递增,g(0)=1﹣2a,g(1)=e>0,①若1﹣2a<0,即a>时,g(0)=1﹣2a<0,g(x)在(0,1)上有一个零点;②若1﹣2a=0,即a=时,g(0)=0,g(x)有一个零点0;③若1﹣2a>0,即0<a<时,g()=e﹣1<0,g(x)在(,0)上有一个零点;(iii)当a<0时,令g′(x)>0,得x>ln(﹣2a);令g′(x)<0,得x<ln(﹣2a).所以g(x)在(﹣∞,ln(﹣2a))单调递减,在(ln(﹣2a),+∞)单调递增,g(x)min=g(ln(﹣2a))=2a[ln(﹣2a)﹣2];①若ln(﹣2a)﹣2<0,即﹣<a<0时,g(x)>0,g(x)无零点;②若ln(﹣2a)﹣2=0,即a=﹣时,g(2)=0,g(x)有一个零点2;③若ln(﹣2a)﹣2>0,即a<﹣时,g(1)=e>0,g(ln(﹣2a))<0,g(x)在(1,ln(﹣2a))有一个零点;设h(x)=e x﹣x2(x≥1),则h′(x)=e x﹣2x,设u(x)=e x﹣2x,则u′(x)=e x﹣2,当x≥1时,u′(x)≥e﹣2>0,所以u(x)=h′(x)在[1,+∞)单调递增,h′(x)≥h′(1)=e﹣2>0,所以h(x)在[1,+∞)单调递增,h(x)≥h(1)=e﹣1,即x>1时,e x>x2,故g(x)>x2+2ax﹣2a,设k(x)=lnx﹣x(x≥1),则k′(x)=﹣1=≤0,所以k(x)在[1,+∞)单调递减,k(x)≤k(1)=﹣1<0,即x>1时,lnx<x,因为a<﹣时,﹣2a>e2>1,所以ln(﹣2a)<﹣2a,又g(﹣2a)>(﹣2a)2+2a(﹣2a)﹣2a=﹣2a>0,g(x)在(ln(﹣2a),﹣2a)上有一个零点,故g(x)有两个零点.综上,当a<﹣时,g(x)在(1,ln(﹣2a))和(ln(﹣2a),﹣2a)上各有一个零点,共有两个零点;当a=﹣时,g(x)有一个零点2;当﹣<a≤0时,g(x)无零点;当0<a<时,g(x)在(,0)上有一个零点;当a=时,g(x)有一个零点0;当a>时,g(x)在(0,1)上有一个零点.四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)作出辅助线,根据AB⊥OE,AB⊥CD,可得OE∥CD,又O为BC的中点,得E为BD的中点,即可证得结论;(Ⅱ)设AC=t(t>0),由射影定理,根据三角形中的知识,即可求得比值.【解答】证明:(Ⅰ)连接AB、OE,∵EA、EB为圆O的切线,∴OE垂直平分AB,又∵BC为圆O的直径,∴AB⊥CD,∴OE∥CD,又O为BC的中点,故E为BD的中点,∴BE=ED …解:(Ⅱ)设AC=t(t>0),则AD=3t,CD=4t,在Rt△BCD中,由射影定理可得:BD2=DA•DC=12t2,∴BD=2t,在Rt△ABD中,AE=BD=t.∴AE:AC=.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.【考点】简单曲线的极坐标方程.【分析】(1)由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得圆的直角坐标方程;(2)求得A,B的直角坐标,即可得到直线AB的方程;求得AB的距离和圆C和半径,求得圆C到直线AB的距离,由圆C上的点到直线AB的最大距离为d+r,运用三角形的面积公式,即可得到所求最大值.【解答】解:(1)由ρ=2cosθ,可得:ρ2=2ρcosθ,所以x2+y2=2x故在平面直角坐标系中圆的标准方程为:(x﹣1)2+y2=1 …(2)在直角坐标系中A(0,3),B(,)所以|AB|==3,直线AB的方程为:x+y=3所以圆心到直线AB的距离d==,又圆C的半径为1,所以圆C上的点到直线AB的最大距离为+1故△ABP面积的最大值为S==…[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.【考点】不等关系与不等式.【分析】(I)f(x)=|x|﹣|2x﹣1|=,由f(x,由f(x)>﹣1,可得:或或,解出即可得出.(Ⅱ)由(Ⅰ)知:0<a<2,可得:a2﹣a+1﹣==g(a).对a分类讨论:当0<a<1时,当a=1时,当1<a<2时,即可得出.(I)f(x)=|x|﹣|2x﹣1|=,由f(x)>﹣1,可得:【解答】解:或或,解得0<x<2,∴M=(0,2).(Ⅱ)由(Ⅰ)知:0<a<2,∵a2﹣a+1﹣==g(a).当0<a<1时,g(a)<0,∴a2﹣a+1<;当a=1时,g(a)=0,∴a2﹣a+1=;当1<a<2时,g(a)>0,∴a2﹣a+1>;综上所述:当0<a<1时,∴a2﹣a+1<;当a=1时,a2﹣a+1=;当1<a<2时,a2﹣a+1>.2016年8月23日。
“江淮十校”2016届高三第一次联考·理科数学
参考答案及评分标准
1.C
2.C
3.A
4. A
5. A 6 B 7. D 8. B 9.B 10. B
11.31n 12.
16.(1)圆x 2+y 2-4x +2y -3=0化为标准方程为(x -2)2+(y +1)2=8,
圆
心为P (2,-1),半径r =22. (4分)
(2)①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0.
设AB 的中点为N ,则|PN |=|2k +1-4k -8|k 2+1=|2k +7|k 2+1,由|PN |2+22
AB =r 2,得k =-4528
, 此
时AB 的直线方程为45x +28y +44=0. (7分)
②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0,
解得y 1=1,y 2=-3,符合题意. (10分)
综上,直线
AB 的方程为45x +28y +44=0或x = 4. (12分)
17.21()cos (cos cos
sin sin )cos 2332f x x x x x x ππ==-11cos(2)234x π=++. (
1)T π=; (4分)
(2)111()cos(2),cos(2)123443
f C C C ππ=++=-∴+=-. 又72333C πππ<+<,则23C ππ+=..3
C π∴=
1
sin 8.2, 4.2ABC S ab C ab a b =
==∴==∴= (10分)
由
余弦定理得2222cos 12,c a b ab C c =+-=∴= (12分)
18.(1)由频率分布表得a+0.3+0.35+b+c=1,
即a+b+c=0.35. (2分)
∵抽取的20件产品中,等级编号为4的恰有2件,∴b=
=0.1.
(4分)
等级编号为5的恰有4件,∴c==0.2. ∴a=0.35﹣b ﹣c=0.05.故a=0.05,b=0.10,
c=0.20. (6分)
(2)解法一:从产品x 1,x 2,y 1,y 2,y 3,y 4中任取两件,所有可能的结果为:
{x 1,x 2},{x 1,y 1},{x 1,y 2},{x 1,y 3},{x 1,y 4},{x 2,y 1},{x 2,y 2},{x 2,y 3}, {x 2,y 4},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共15个. (8分)
设A 表示“从x 1、x 2,y 1,y 2,y 3,y 4,这6件产品中任取两件这两件产品的等级编号恰好相同”,
则A 包含的基本事件为:{x 1,x 2},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共7个. (10分)
故所求概率为:p=. (12分) 解法二:222426715
C C p C +==。
19.(1)证明(方法一):∵AB
D CBD ∠=∠,AB BC =,BD BD =.
∴CBD ABD ∆≅∆. ∴CD AD =.
取AC 的中点E ,连结,BE DE ,则BE AC ⊥, DE AC ⊥.
又∵E DE BE = ,⊂BE 平面BED ,⊂DE 平面BED ,
∴AC ⊥平面BED ,
∴AC BD ⊥. (5分)
(方法二):过C 作CH ⊥BD 于点H .连接AH .
∵ABD CBD ∠=∠,AB BC =,BD BD =.
∴CBD ABD ∆≅∆.∴ AH ⊥BD .
又∵H CH AH = ,⊂AH 平面ACH ,⊂CH 平面ACH ,
∴BD ⊥平面ACH .
又∵⊂AC 平面ACH ,∴BD AC ⊥. (5分)
(方法三):BD BA BC BD AC ⋅-=⋅)(BD BA BD BC ⋅-⋅=
ABD CBD ∠∠
060cos 260cos 2=︒-︒=BD BD
∴BD AC ⊥. (5分)
(2)解:过C 作CH ⊥BD 于点H .则⊂CH 平面BCD .
又∵平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,
∴CH ⊥平面ABD .
过H 作HK ⊥AD ,交AD 于点K ,连接CK .
∵CH ⊥平面ABD ,∴CH ⊥AD ,又H CH HK = .
∴AD ⊥平面CHK .∴CK ⊥AD .
∴CKH ∠为二面角C AD B --的平面角. (9分)
连接AH .∵CBD ABD ∆≅∆,∴ AH ⊥BD .
∵60ABD CBD ︒∠=∠=,2AB BC ==, ∴3=
=CH AH ,1BH =.∵52BD =,∴32DH =.
∴AD =.∴AH DH HK AD ⋅==.∴3
21tan ==∠HK CH CKH .∴
cos CKH ∠=∴二面角C AD B -- (13分)
20.由0>-x x kb a ,得k b a
x >)(.∵a >1>b>0,∴b
a >1. 若0k ≤,则x R ∈,与定义域相矛盾,故0k >,因此x >log
k b a
.
(3分) 又f (x )定义域为(0,+∞),∴log k b
a =0,k =1,∴f (x )=lg )(x x
b a -.
(5分)
设0<21x x <,2
21
1lg 21x x x x b a b a y y --=-,∵a >1>b>0,∴a x 1< a x 2,-b x 1< -b x 2. ∴0< a 1x -b 1x < a x 2- b x 2,∴0<221
1x x x x b a b a --<1,∴lg 2211x x x x b a b a --<0.
∴2121,0y y y y <<-,∴f (x )在(0,+∞)上是增函数. (8分)
∴x ∈(1,+∞)时,必有f (x )>f (1)=lg(a -b).
∵f (x )在(1,+∞)上取正值,∴lg(a -b)=0,a -b=1.(1)
又f (3)=lg4,∴lg ()a b 33-=lg4,a b 33- =4.(2)
解(1)(2)得:251+=
a ,b=2
51+-,即存在251+=a ,b=251+-满足条件. (13分)
21.(1)依题意,⊙n P 的半径2
n n n x y r ==, ⊙n P 与⊙1+n P 彼此外切, ∴11+++=n n n n r r P P ,∴12121)()(++++=-+-n n n n n n y y y y x x .
两边平方,化简得1214)(++=-n n n n y y x x ,即2
12214)(++=-n n n n x x x x . 01>>+n n x x ,∴112++=-n n n n x x x x ,1112()n n
n N x x ++⇒-=∈. ∴ 数列⎭
⎬⎫⎩⎨⎧n x 1是等差数列. (6分)
(2)由题设,11=x ,∴1
212)1(111-=⇒⋅-+=n x n x x n n . 4422)12(-====n x y r S n n n n π
πππ.
n n S S S T +⋅⋅⋅++=21 =⎥⎦⎤⎢⎣⎡-++++222)12(1513
11n π≤⎥⎦⎤⎢⎣⎡-⋅-++⋅+⋅+)12()32(15313111n n π =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣
⎡---++-+-+)121321()5131()311(211n n π =⎥⎦⎤⎢⎣⎡--+)1211(211n π 2
3)12(223πππ<--=n . (13分)。