1.3蚂蚁怎么走最近
- 格式:doc
- 大小:276.50 KB
- 文档页数:5
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
第七讲蚂蚁怎样走最近一、【基础知识精讲】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c2=a2+b2(c为斜边)。
2.勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:a2+b2= c2,那么这个三角形是直角三角形。
注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。
二、【例题精讲】例1:如图:有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(∏的取值为3)例2:如图有一个三级台阶,每级台阶长、宽、高分别为2米、0.3米0.2米,A处有一只蚂蚁,它想吃到B处食物,你能帮蚂蚁设计一条最短的线路吗?并求出最短的线路长。
例3:古代数学著作《九章算术》中记载了如下一个问题:有一个水池,水面的边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?三、【同步练习】★A组★1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少。
4.如图1,有一个底面半径为6cm ,高为24cm 的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物后再返回到A 点处休息,请问它需爬行的最短路程约是多少?(π取整数3)5. 如图,折叠长方形一边AD ,点D cm AB 8=,求FC 的长。
[标签:标题]篇一:北师大版八年级上册数学课本课后练习题答案八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,,¤,♀,∮,≒,均表示本章节内的类似符号。
1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm。
21.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)=AB+CD:也就是BC=a+b。
, 222222这样就验证了勾股定理l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
1.3 勾股定理的应用第一环节:情境引入内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近? 情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情. 效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.效果:学生汇总了四种方案:A’A’A’(1) (2) (3) (4)学生很容易算出:情形(1)中A →B 的路线长为:'AA d +,情形(2)中A →B 的路线长为:'2dAA π+所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA ’剪开圆柱得到矩形,情形(3)A →B 是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.如图:(1)中A →B 的路线长为:'AA d +. (2)中A →B 的路线长为:''AA A B +>AB . (3)中A →B 的路线长为:AO +OB >AB . (4)中A →B 的路线长为:AB .得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB ?在Rt △AA′B 中,利用勾股定理可得222'B A A A AB +'=,若已知圆柱体高为12cm ,底面半径为3cm ,π取3,则22212(33),15A B A B =+⨯∴=.注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能.但这一拓展使学生无法去论证最短路径究竟是哪条.因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上.方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下: 1.审题——分析实际问题; 2.建模——建立相应的数学模型; 3.求解——运用勾股定理计算; 4.检验——是否符合实际问题的真实性.第三环节:做一做内容:李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD 长是30厘米,AB 长是40厘米,BD 长是50厘米,AD 边垂直于AB 边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD 边是否垂直于AB 边吗?BC 边与AB 边呢?解答:(2)222230402500AD AB +=+=22500BD =222AD AB BD ∴+=∴AD 和AB 垂直.意图:运用勾股定理逆定理来解决实际问题,让学生学会分析问题,利用允许的工具灵活处理问题.效果:先鼓励学生自己寻找办法,再让学生说明李叔叔的办法的合理性.当刻度尺较短时,学生可能会在上面解决问题的基础上,想出多种办法,如利用分段相加的方法量出AB ,AD 和BD 的长度,或在AB ,AD 边上各量一段较小长度,再去量以它们为边的三角形的第三边,从而得到结论.第四环节:小试牛刀内容:1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6 km/h 的速度向正东行走,1时后乙出发,他以5 km/h 的速度向正北行走.上午10:00,甲、乙两人相距多远?解答:如图:已知A 是甲、乙的出发点,10:00甲到达B 点,乙到达C 点.则:AB =2×6=12(km )A3220BA AC=1×5=5(km)在Rt△ABC中:22222251216913BC AC AB=+=+==.∴BC=13(km).即甲乙两人相距13 km.2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.解答:2222152062525AB∴=+==.3.有一个高为1.5 m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒有多长?解答:设伸入油桶中的长度为x m.则最长时:2221.522.5xx=+=..∴最长是2.5+0.5=3(m).最短时: 1.5x=.∴最短是1.5+0.5=2(m).答:这根铁棒的长应在2~3m之间.意图:对本节知识进行巩固练习,训练学生根据实际情形画出示意图并计算.效果:学生能独立地画出示意图,将现实情形转化为数学模型,并求解.第五环节:举一反三内容:1.如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?解:如图,在Rt △ABC 中: 222221020AB AC BC =+=+=500.∵500>202.∴不能在20 s 内从A 爬到B .2.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?解答:设水池的水深AC 为x 尺,则这根芦苇长为AD =AB =(x +1)尺,在直角三角形ABC 中,BC =5尺. 由勾股定理得:BC 2+AC 2=AB 2. 即 52+ x 2=(x +1)2.25+x 2= x 2+2x +1. 2x =24.∴ x =12,x +1=13.答:水池的水深12尺,这根芦苇长13尺. 意图:第1题旨在对“蚂蚁怎样走最近”进行拓展,从圆柱侧面到棱柱侧面,都是将空间问题平面化;第2题,学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;运用方程的思想并利用勾股定理建立方程.效果:学生能画出棱柱的侧面展开图,确定出AB 位置,并正确计算.如有可能,还可把正方体换成长方体进行讨论.学生能画出示意图,找等量关系,设适当的未知数建立方程.注意事项:对于普通班级而言,学生完成“小试牛刀”,已经基本完成课堂教学任务.因此本环节可以作为教学中的一个备选环节,共老师们根据学生状况选用.第六环节:交流小结内容:师生相互交流总结:1.解决实际问题的方法是建立数学模型求解.2.在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题.意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史.效果:学生畅所欲言自己的切身感受与实际收获,总结出在寻求曲面最短路径时,往往考虑其展开图,利用两点之间,线段最短进行求解.并赞叹我国古代数学的成就.第七环节:布置作业1.课本习题1.4第1,2,3题.2.如图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?注意事项:作业2作为学有余力的学生的思考题.教学设计反思本节从生动有趣的问题情景出发,通过学生自主探究,运用勾股定理及其逆定理解决简单的实际问题,既巩固了基本知识点,又在将实际问题抽象成几何图形过程中,学会观察,提高分析能力,渗透数学建摸思想.在设计中,我注重以下两点:1.要充分利用好教材提供的素材“蚂蚁怎么走最近”是一个生动有趣的问题,让学生充满了探究的欲望,这个问题体现了二、三维图形的转化,对发展学生的空间观念很有好处.2.合理使用教材提供的练习本节课通过“小试牛刀”和“举一反三”把教材中的练习重组,使练习有梯度,既巩固了基本知识点,又训练了学生的应用能力.第一个作业让学生深入理解和应用勾股定理及逆定理.3.突破重点、突破难点的策略在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力.4.分层教学根据本班学生实际情况可在教学过程中选择:基础训练——“小试牛刀”;提高训练——“举一反三”;拓展训练——作业第2题.5.评价方式根据新课标的评价理念,在教学过程中应关注学生的参与程度,关注活动中所反映出的思维水平,关注对实际问题的理解水平,关注学生对基本知识的掌握情况和应用勾股定理及逆定理解决实际问题的意识和能力.在教学过程中尊重学生的个体差异,对于学生的回答教师应给予恰当的评价与鼓励,并帮助学生树立学习数学的自信,充分发挥教育的价值.附:板书设计。
教学篇•教学反思现举例分析如下:爬台阶爬行问题:如图所示,学校教学楼前的台阶上,每一级的长、宽和高分别等于5dm ,3dm 和1dm ,在台阶的某层一端B 点上有一只蚂蚁,想到A 点吃食物,那么这只蚂蚁从B 点出发,沿着台阶面爬到A 点,怎么样爬路线最短呢?AC B A B135思路分析:在台阶上爬,学生刚开始思考起来有难度,需要转化为我们初中生熟悉的平面几何问题来解决。
我们不妨假设台阶上铺上红地毯,现在把红地毯平铺到一个平面上,再来研究计算AB 之间的距离,这样理解起来更为直接。
解:将台阶展开,如下图,因为AC =3×3+1×3=12,BC =5,所以AB 2=AC 2+BC 2=169,所以AB =13(dm ),所以蚂蚁爬行的最短线路为13dm .答:蚂蚁爬行的最短线路为13dm .绕圆柱体爬行问题:如图所示,桌子上有一个圆柱形的透明玻璃杯,玻璃杯的底面圆的周长为16cm ,高为7cm ,一只蚂蚁从距离底面1cm 的A 处爬行到对角的B 处吃食物,那么小蚂蚁怎样爬行路线最短呢?最短路线是多少?AB CAB 分析:显然在圆柱体上找最短路径,想象起来比较困难,首先学生在曲面上画图比较困难,在圆柱体的表面画出最短路径比较困难,因此应该考虑把圆柱体的侧面展开成一个矩形,把曲面转化为平面,从而进行求解。
解答:展开图如图所示,题目变成解直角三角形ABC 的问题,利用勾股定理可以很容易解得AB 的最小值为10cm.拓展训练:桌子上有一个圆柱形的透明玻璃杯,玻璃杯的高为12cm ,底面周长10cm ,在杯口内壁离杯口2cm 的A 处有一滴蜂蜜,一只小蚂蚁在和点A 相对的玻璃杯的外壁上的点B 处,点B 距离桌面为2cm ,小蚂蚁沿着玻璃杯从B 处到A 处去吃蜂蜜,怎样爬行路线最近呢?最短路径是多少?A BB AA ′解答:展开图如图所示,做A 点关于杯口的对称点A ′。
则BA ′=52+122√=13cm 绕圆锥体爬行问题:如图所示,圆锥体的底面半径为5cm ,母线长为20cm ,一只小蚂蚁若从底面圆周上一点A 点出发,绕圆锥体的侧面爬行一周又回到A 点,怎样爬行路线最近呢?最短路径是多少?A解:由题意知,可求底面周长等于10πcm ,设圆锥的侧面展开后的扇形圆心角为n °,根据底面周长等于展开后扇形的弧长,解得n =90°,圆锥的侧面展开图为圆心角为90°的扇形,连接AA ′,两条母线和AA ′构成等腰直角三角形,根据勾股定理很容易求得小蚂蚁爬行的最短的路线。
学科 数学 年级 八年级 授课班级
主备教师 郑由兰 参与教师
课型 新授课 课题 §1.3 蚂蚁怎么走最近
备课组长审核签名 教研组长审核签名
学习目标:(1)通过自主探索合作更好地理解勾股定理以及直角三角形的判别条件。
(2)解决勾股定理在现实生活中的简单运用。 (3)能通过观察图形,培养学生动手能力、
分析推理能力以及小组合作能力,让学生在探索中体验发现的乐趣。
学习内容(学习过程)
一、自主预习(感知)
1、勾股定理:直角三角形两直角边的 等于 。如果用a,b和c表示直角三角形的
两直角边和斜边,那么a2 + b2= c
2
2、勾股定理逆定理:如果三角形三边长a,b,c满足 那么这个三角形是直角三角形。
3、判断题(1).如果三角形的三边长分别为a,b,c,则 a2 + b2= c2 ( )
(2)如果直角三角形的三边长分别为a,b,c,则a2 + b2= c2( )
(3)由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形 ( )
4、填空:
(1).在△ABC中, ∠C=90°,c=25,b=15,则a=____.
(2). 三角形的三个内角之比为:1:2:3,则此三角形是___.若此三角形的三边长分别为a,b,c,
则它们的关系是____.
(3)三条线段 m,n,p满足m2-n2=p2,以这三条线段为边组成的三角形为( )。
二、合作探究(理解)
例题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂
蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(π
的值取3).
如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?
B
A 如果是正方体呢,长方体呢
A
B
做一做:1、如图所示是一尊雕塑的底座的正面,李叔叔想要检测正面的AD边和BC边是否分
别垂直于底边AB,但他随身只带了卷尺. (1)你能替他想办法完成任务吗?
(2)李叔叔量得AD的长是30厘米,AB的长是40厘米,BD长是50厘米.AD边垂直于AB边吗?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?
BC边与AB
边呢?
3、某海中央有一座小岛,以小岛为中心有一股台风正以3千米/秋的速度向正北方向行驶,
两小时后遇到一座高山,风向突然改变,改为向正东方向刮去,此时风速更为凶猛,已达到4
千米/秒,又过了两小时,这时台风中心距离小岛多远。
三、轻松尝试(运用)
1在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是
一个边长为10尺的正方形。在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向
岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和这根芦苇的长度各是多少?
2、甲、乙两位探险者到沙漠进行探险。某日早晨8:00甲先出发,他以6千米/时的速度向正东行走。1小
时后乙出发,他以5千米/时的速度向正北行走。上午10:00,甲、乙二人相距多远?
3、如图所示,某地有A,B,C三个村庄,C村到B村,A村的距离分别为24千米,10千米,A,B两村相距
26千米,现要从C村修一公路CD到AB,要求所修公路最短,请你在图上标出D点的位置,并
求出CD的长。
3、一个无盖的长方体形盒子的长、宽、高分别为8㎝,8㎝,12㎝,一只蚂蚁想从盒底的A点爬到盒顶的
A
D
C
B
A
C
B
B点,你能帮蚂蚁设计一条最短的路线吗?蚂蚁要爬行的最短行程是多少?
B
12㎝
8㎝
A 8㎝
四、拓展延伸(提高)
4如图,带阴影的矩形面积是多少?
6如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁
如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
五、收获盘点(升华)
六、当堂检测(达标)
1、甲、乙两位探险者到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东
行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?
2、如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插
入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
3、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个
水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.
如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦
苇的长度各为多少?
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《优化设计》中的本节内容。
2、思考题:
学习反思: