第2课时 整式
- 格式:doc
- 大小:285.00 KB
- 文档页数:13
2.1整式(第2课时)教学目标1.理解单项式、单项式的系数和次数的概念;会判断一个式子是否是单项式,能准确地说出一个单项式的系数和次数.2.经历单项式的概念的形成过程,提高观察、分析、归纳、概括能力.教学重点理解单项式、单项式的系数和次数的概念.教学难点会准确迅速地确定一个单项式的系数和次数.教学过程新课导入填空,并观察所填式子的特点:1.边长为m的正方形的周长是4m,面积是m2 .2.一辆汽车的速度是v km/h,行驶t h所走过的路程为vt km.3.半径为b的圆的周长为2πb,面积为πb2.4.设a表示一个数,则它的相反数是-a .新知探究一、探究学习【问题】下列式子有什么特点?4m,m2,vt,2πb,πb2,-a.【思考】π是字母吗?【师生活动】学生独立回答π是否为字母.【设计意图】为后面学习单项式、确定单项式的系数做铺垫.二、新知精讲【新知】通过对所给出的式子进行分类,引入单项式的概念.【师生活动】引导学生分析各个式子,找出各式之间的共同特点.教师指出,单独的一个数或一个字母也是单项式.【设计意图】认识单项式,为后面引出单项式的系数、次数等相关概念做铺垫.【新知】单项式的相关概念:-3x2y3单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.上面所给单项式中,单项式的系数为-3,单项式的次数为2+3=5.【师生活动】学生独立回答所给单项式的系数和次数分别是什么.【设计意图】通过实例让学生认识单项式的系数、次数等概念.【问题】a和-a的系数和次数分别是什么?由此得出什么结论?【师生活动】学生独立回答.【设计意图】让学生进一步加深对单项式的系数的认识,知道系数要包括数字因数前面的性质符号.三、典例精讲【例1】下列式子中,单项式有哪些?(1)-3;(2)13x2y;(3)2a;(4)23m;(5)-12ab2;(6)729x-+;(7)n2;(8)π+2.【答案】单项式有(1)(2)(4)(5)(7)(8).【师生活动】紧扣定义,对每个式子进行分析.【设计意图】巩固学生对单项式的概念的理解.【思考】判定单项式时,需要注意什么?【师生活动】学生根据解题过程,结合前面的新知进行总结.【设计意图】巩固对单项式的概念的理解,加深认识.【例2】用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有______册;(2)底边长为a cm,高为h cm的三角形的面积是_____cm2;(3)棱长为a cm的正方体的体积是_____cm3;(4)一台电视机原价b元,现按原价的九折出售,这台电视机现在的售价是_____元;(5)一个长方形的长是0.9 m,宽是b m,这个长方形的面积是_____m2.【答案】解:(1)12n,它的系数是12,次数是1;(2)12ah,它的系数是12,次数是2;(3)a3,它的系数是1,次数是3;(4)0.9b,它的系数是0.9,次数是1;(5)0.9b,它的系数是0.9,次数是1.【师生活动】学生单独写出单项式,再小组讨论确定单项式的系数和次数.【设计意图】让学生熟悉用单项式表示数量关系,并复习巩固单项式的系数与次数的概念.【思考】怎样确定一个单项式的系数和次数呢?【师生活动】学生总结,教师进行完善补充.【设计意图】准确地掌握确定单项式的系数和次数的技巧,正确答题.课堂小结板书设计一、单项式的定义二、单项式的系数三、单项式的次数课后任务完成教材第57页练习1~2题.。
2.2整式的加减(第2课时)教学目标1.类比有理数的去括号规律,归纳概括得出整式的去括号规律,体会“数式通性”.2.掌握整式的去括号规律.教学重点准确运用去括号规律进行整式的化简.教学难点括号前面是“-”号时如何去括号.教学过程新课导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段、非冻土地段的行驶速度分别是100 km/h和120 km/h.列车通过冻土地段比通过非冻土地段多用0.5 h,如果通过冻土地段需要u h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少千米?【师生活动】学生独立列出问题中要求的两个表达式:100u+120(u-0.5),①100u-120(u-0.5).②【设计意图】列出两个含有括号的式子,在教师的指导下,引入对整式的去括号规律的研究.【问题】利用分配律计算:(1)12×1263⎛⎫⎪⎝⎭+;(2)-12×1143⎛⎫⎪⎝⎭-.【答案】解:(1)原式=12×16+12×23=2+8=10;(2)原式=-12×14+(-12)×13⎛⎫⎪⎝⎭-=-3+4=1.【师生活动】学生独立解答.【设计意图】通过数的运算,引导学生进行类比,为学习整式如何去括号做铺垫.新知探究一、探究学习【问题】如何对前面的①②两式去括号呢?100u+120(u-0.5),①100u-120(u-0.5).②【师生活动】学生仿照数的运算,对①②进行去括号运算.【设计意图】通过对整式去括号,让学生意识到,数的运算中去括号的方法,在整式的运算中依然成立.二、新知精讲【思考】整式的去括号法则是什么?【师生活动】学生通过对整式去括号得到的结果进行总结,找到去括号前后的符号变化规律.【设计意图】通过自己总结,让学生熟练掌握去括号时符号变化的规律.【新知】去括号时符号变化的规律如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【师生活动】让学生完成填空内容.【设计意图】进一步巩固学生对去括号时符号的变化特点的认识.【问题】你能利用分配律为下面的式子去括号吗?(1)+(x-3);(2)-(x-3).【师生活动】学生独立解决,完成去括号.【设计意图】巩固对去括号时符号变化的规律的认识.三、典例精讲【例1】化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b);(3)6x2-3y2-2(3y2-2x2);(4)3b-2c-[-4a+(c+3b)]+c.【答案】解:(1)原式=8a+2b+5a-b=13a+b;(2)原式=5a-3b-(3a2-6b)=5a-3b-3a2+6b=-3a2+5a+3b;(3)原式=6x2-3y2-6y2+4x2=(6x2+4x2)+(-3y2-6y2)=10x2-9y2;(4)原式=3b-2c-(-4a+c+3b)+c=3b-2c+4a-c-3b+c=4a-2c.【师生活动】学生独立完成,然后互相纠错、评价.【设计意图】通过做题,熟练掌握整式去括号时符号变化的规律,同时意识到去括号有助于将式子化简.【例2】两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?【答案】解:顺水航速=船速+水速=(50+a) km/h,逆水航速=船速-水速=(50-a) km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【师生活动】学生尝试独立解答,派出学生代表回答.【设计意图】该题涉及列式表示数量关系、去括号和合并同类项,为后面研究整式的加减做铺垫.课堂小结板书设计一、去括号的依据二、去括号时符号变化的规律课后任务完成教材第67页练习1~2题.。
C第2课时 整式与分式重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。
难点是选择适当的方法因式分解及代数式的混合运算。
【教学过程】1.整数指数幂的运算例1 (2004上海中考)下列运算,计算结果正确的是( )(多项选择)(A )743a a a =⋅; (B ) 632a a a ÷=; (C ) 325()a a =; (D ) 333)(b a b a ⋅=⋅答案:A,D说明:()()nnnmnnm nm nmnm nmb a ab a a a a a a aa a ==≠=÷=∙-+;);0(;,其中是m,n 正整数,合理利用幂的运算法则,可以正用也可以逆用,如果不是同底的幂,在计算时应化成同底数幂的形式,在化成同底数幂时要注意符号。
例2 (徐汇2008模拟考)计算:=÷-xy y x 2432______________.答案:22xy -说明:直接运用单项式与单项式的运算法则,注意优先确定符号。
同源题选: 1.(闸北2008模拟考)下列计算中,正确的是…………………………………………( )(A )2a 3-3a =-a ; (B )(-ab )2=-a 2b 2;(C )a 2·a -3=a -1; (D )-2a 3÷(-2a )=-a 2. (答案:C ) 2.(崇明2008模拟考)下列运算中,计算结果正确的是 ( ) (A )632a a a =⋅; (B )ab b a 532=+; (C )325a a a =÷; (D )b a b a 422)(=(答案:C ) 3.(奉贤2008模拟考)计算)(2363m m -÷= . (答案:m 21-) 2.分解因式(乘法公式的应用)例3 (2007上海中考)分解因式:222a ab -=答案:)(2b a a -例4 (崇明2008模拟考)因式分解:22363y xy x +-= .答案: ()23y x -说明:提取公因式是因式分解中最基本的方法,它的关键是找出公因式,难点是提取公因式后,括号内多项式的确定,要防止漏项或符号出错,检验的最好办法是用提取的公因式乘以括号内的多项式,再与原多项式对照。