飞机结构与系统
- 格式:pptx
- 大小:6.39 MB
- 文档页数:81
一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。
在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。
机翼通常有平直翼、后掠翼、三角翼等。
机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。
近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。
即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。
为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。
襟翼平时处于收上位置,起飞着陆时放下。
3)尾翼尾翼分垂直尾翼和水平尾翼两部分。
1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后缘设有方向舵。
飞行员利用方向舵进行方向操纵。
当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。
某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。
低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。
飞机结构与系统(看⼏遍,背背就过)飞机的外载荷飞⾏时,作⽤在飞机上的外载荷主要有:重⼒、升⼒、阻⼒和推⼒ _分类:1. 飞机⽔平直线飞⾏时的外载荷2. 飞机做机动飞⾏时的外载荷(垂直平⾯、⽔平平⾯)3. 飞机受突风作⽤时的外载荷(垂直突风、⽔平突风)飞机的重⼼过载过载:作⽤在飞机某⽅向的除重⼒之外的外载荷与飞机重量的⽐值,称为飞机在该⽅向的飞机重⼼过载。
飞机的结构强度主要取决于y轴⽅向的过载n y=Y⁄G过载的意义通过过载值可求出飞机所受的实际载荷⼤⼩与其作⽤⽅向,便于设计飞机结构,检验其强度、刚度是否满⾜要求。
标志着飞机总体受外载荷的严重程度。
过载与速压最⼤使⽤过载:设计飞机时所规定的最⼤使⽤过载值,称为最⼤使⽤过载。
飞机在飞⾏中的过载值n y表⽰了飞机受⼒的⼤⼩。
通常把飞机在飞⾏中出现的过载值ny称为使⽤过载。
最⼤使⽤过载是在设计飞机时所规定的,它主要由飞机的机动飞⾏能⼒、飞机员的⽣理限制和飞⾏中因⽓流不稳定⽽可能受到的外载荷等因素确定的。
在某⼀个特定的⾼度,由于发动机的推⼒有限,所以所能达到的速度有限,因此所能达到的速压也就有限。
使⽤限制速压:通常规定某⼀⾼度H o上对应的最⼤q值为使⽤限制速压。
最⼤允许速压:飞机在下滑终了时容许获得的最⼤速压,称为最⼤允许速压(强度限制速压)。
最⼤允许速压⽐使⽤限制速压更加重要。
飞机飞⾏中不能超过规定的速压值,否则,飞机会由于强度、刚度不⾜⽽使蒙⽪产⽣过⼤的变形或者撕离⾻架,有时还可能引起副翼反效,机翼、尾翼颤振现象。
速压和过载的意义过载的⼤⼩⼀⼀飞机总体受⼒外载荷的严重程度速压的⼤⼩⼀⼀飞机表⾯所承受的局部⽓动载荷的严重程度因此,由最⼤使⽤过载和最⼤允许速压所确定的飞机强度和刚度,反映了飞机结构的承载能⼒。
飞⾏包线⼀系列飞⾏点的连线。
以包络线的形式表⽰允许航空器飞⾏的速度、⾼度范围。
同⼀翼型,机翼的迎⾓与升⼒系数⼀⼀对应。
要确定飞机的严重受载情况,就要同时考虑过载ny、速压q和升⼒系数Cy的⼤⼩。
飞机结构与系统一、引言飞机结构与系统是飞机设计与制造中至关重要的一部分。
它涵盖了飞机的设计、材料选择、结构安全性、机载系统等多个方面。
本文将介绍飞机结构与系统的基本概念、主要组成部分以及设计原则。
二、飞机结构的基本概念1.主要组成部分–机身:飞机的主体结构,通常包括机头、机尾和机翼的连接部分。
–机翼:产生升力的关键部件,通常由主翼和副翼组成。
–尾翼:控制飞机姿态的部件,通常由水平尾翼和垂直尾翼组成。
–起落架:支撑飞机在地面行驶和起降的部件。
–发动机支架:固定安装发动机的结构。
2.结构材料–金属材料:如铝合金、钛合金等,常用于飞机的结构部件。
–复合材料:如碳纤维、玻璃纤维等,具有较高的强度和轻质化特性,广泛应用于现代飞机。
–纺织品:如织物、缝合线等,用于飞机内饰和安全带等部件。
三、飞机系统的主要组成部分1.动力系统–发动机:提供飞机所需的推力,通常有涡轮喷气发动机和涡桨发动机等类型。
–燃油系统:负责存储和供应燃油。
–冷却系统:确保发动机和其他关键部件的温度控制。
2.控制系统–飞行控制系统:包括飞行操纵系统、自动驾驶系统等,用于控制飞机的姿态和操纵。
–电气控制系统:用于飞机各个系统的电力供应和控制。
–液压控制系统:用于操纵和控制飞机的液压系统。
3.气源系统–压气机:用于提供机载气源,供应给相关系统使用。
4.辅助系统–环境控制系统:负责飞机的空调、供氧等工作。
–消防系统:用于应对可能发生的火灾事故。
–导航系统:用于飞机的导航和定位。
–通信系统:用于飞机与地面的通信。
四、飞机结构与系统的设计原则1.安全性:飞机结构与系统的设计必须满足航空器运行的安全要求,保证在各种工况下的结构安全和系统可靠性。
2.结构轻量化:采用轻质材料和合理的结构设计,以降低飞机自重,提高机载有效载荷和航程。
3.系统模块化:将飞机系统划分为独立的模块,并通过标准化接口进行连接,以方便维护和升级。
4.节能环保:优化动力系统和控制系统设计,降低燃料消耗和排放。
机舱设备飞机结构与系统机舱设备是指安装在飞机机舱内的各种设备和系统,包括飞行控制系统、导航系统、通信系统、仪表系统、防火系统、环境控制系统、安全系统等。
这些设备和系统在飞机的结构上有着重要的作用,保障了飞机的安全飞行和乘客的舒适体验。
首先,飞机的结构和系统是保证飞机安全飞行的基础。
飞机的结构包括机身、机翼、机尾、起落架等部分,这些组成了飞机的主要框架,能够承受飞行过程中的各种载荷和外界的作用力。
飞机的系统包括液压系统、电气系统、燃油系统等,这些系统提供了飞机运行所需的动力、能源和控制功能。
机身的结构和系统的设计必须符合严格的工程标准和安全要求,以确保飞机在各种复杂的飞行环境下能够稳定飞行并保证乘客的安全。
其次,飞机的结构和系统也直接影响了飞机的飞行性能。
飞机的结构和系统在设计上注重轻量化和高强度,以降低飞机的自重并提高飞行效率。
机翼的设计影响了飞机的升力和阻力,机身的设计影响了飞机的飞行稳定性和操纵性能,而发动机的位置和推力则决定了飞机的加速性能和爬升能力。
同时,飞机的系统还包括自动飞行控制系统、导航系统和通信系统等,这些系统使得飞机能够在不同的飞行阶段和不同的飞行条件下实现安全、准确和高效的飞行。
还有,飞机的机舱设备也影响了乘客的舒适体验。
飞机的环境控制系统可以调节机舱的温度、湿度和压力,使乘客在高空中也能够保持一个舒适的环境。
此外,飞机的仪表系统可以提供准确的飞行信息和引导,让乘客感受到安全和放心。
防火系统和安全系统则为乘客提供了必要的安全保护,确保他们在紧急情况下能够迅速疏散和获救。
总之,飞机的结构和系统是保证飞机安全飞行的基础,并直接影响飞机的飞行性能和乘客的舒适体验。
随着科技的不断发展,机舱设备也在不断更新和改进,以适应越来越高的飞行要求和乘客的需求。