安徽省江南十校联考2019届高考数学一模试卷(理科) Word版含解析
- 格式:doc
- 大小:684.01 KB
- 文档页数:23
2019年安徽省江淮十校高三上学期第一次联考(理)数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.已知集合1|,0A y y x x x ⎧⎫==+≠⎨⎬⎩⎭,集合{}2|40B x x =-≤,若A B P ⋂=,则集合P 的子集个数为( )A .2B .4C .8D .162.复数z 满足342z i ++=,则z z ⋅的最大值是( )A .7B .49C .9D .813.设,,a b c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知向量a 、b 均为非零向量,(a -2b )⊥a ,|a |=|b |,则a 、b 的夹角为( ) A .6π B .3π C .23π D .56π 5.已知ln x π=,13y e -=,13log z π=,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<6.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )ABC D7.如图,在正方体111ABCD A B C D -中,F 是棱11A D 上动点,下列说法正确的是( )A .对任意动点F ,在平面11ADD A 内不存在...与平面CBF 平行的直线B .对任意动点F ,在平面ABCD 内存在..与平面CBF 垂直的直线C .当点F 从1A 运动到1D 的过程中,FC 与平面ABCD 所成的角变大..D .当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变小..8.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在(,)x s x s -+内的人数占公司总人数的百分比是(精确到1%)( )A .56%B .14%C .25%D .67%9.将余弦函数的图象向右平移2π个单位后,再保持图象上点的纵坐标不变,横坐标变为原来的一半,得到函数()f x 的图象,下列关于()f x 的叙述正确的是( )A .最大值为1,且关于3,04π⎛⎫ ⎪⎝⎭对称 B .周期为π,关于直线2x π=对称 C .在,68ππ⎛⎫- ⎪⎝⎭上单调递增,且为奇函数 D .在0,4π⎛⎫ ⎪⎝⎭上单调递减,且为偶函数 10.对任意实数x ,恒有10x e ax --≥成立,关于x 的方程()ln 10x a x x ---=有两根为1x ,2x ()12x x <,则下列结论正确的为( )A .122x x +=B .121=x xC .122x x =D .12x x e =11.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( )A B .12 C .2 D12.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为( )A .53π B .43π C .π D .2π第II 卷(非选择题)二、填空题13.已知实数x 、y 满足210020x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则目标函数2z x y =+的最小值为_____________。
2019年安徽省“江南十校”综合素质检测数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合}{2,1,0,1,2--=U ,{}U x x x A ∈>=,12,则=A C U{}2,2.-A {}1,1.-B {}2,0,2.-C {}1,0,1.-D2、复数iiz -=1(i 为虚数单位),则=-z22.A 2.B 21.C 2.D 3、抛物线22x y =的焦点坐标是⎪⎭⎫ ⎝⎛21,0.A ⎪⎭⎫ ⎝⎛0,21.B ⎪⎭⎫ ⎝⎛81,0.C ⎪⎭⎫ ⎝⎛0,81.D 4、在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C B c b 2,3,72===,则C 2cos 的值为37.A 95.B 94.C 47.D 5、已知边长为1的菱形ABCD 中,︒=∠60BAD ,点E 满足→→=EC BE 2,则→→•BD AE 的值是31.-A 21.-B 41.-C 61.-D5、我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.” 意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线)0(2L y x y ≤≤=绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,的截面圆的面积为l l ππ=2)(.由此构造右边的几何体1Z :其中⊥AC 平面α,πα=⊂=11,,AA AA L AC ,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且l FP PQ ==,π,则几何体Z 的体积为2.L A π3.L B π 221.L C π 321.L D π7、已知函数)0)(32cos()(>+=ωπωx x f 的最小正周期为π4,则下面结论正确的是.A 函数)(x f 在区间()π,0上单调递增 .B 函数)(x f 在区间()π,0上单调递减 .C 函数)(x f 的图像关于直线32π=x 对称 .D 函数)(x f 的图像关于点⎪⎭⎫⎝⎛032,π对称 8、设函数1313)(2+-•=x x x x f ,则不等式0)log 1()log 3(22<-+x f x f 的解集是⎪⎪⎭⎫⎝⎛22,0.A ⎪⎪⎭⎫ ⎝⎛+∞,22.B ()2,0.C ()+∞,2.D9、已知双曲线14222=-by x 的左、右焦点分别为21,F F ,P 为右支上一点且直线2PF 与x 轴垂直,若21PF F ∠的角平分线恰好过点()0,1,则21F PF ∆的面积为12.A 24.B 36.C 48.D10. 已知函数()()xeInx x x g x k x x f -=+-=4,11(e 是自然对数的底数),若对()[]3,1,1,021∈∃∈∀x x ,使得)()(21x g x f ≥成立,则正数k 的最小值为21.A 1.B 324.-C 324.+D11. 如图,网格线上的小正方形的边长为1,粗线(实线、虚线)画出的某几何体的三视图, 其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为20.A 420.π+B 4320.π+C 4520.π+D12. 计算机内部运算通常使用的是二进制,用1和0两个数字与电脑的通和断两种状态相对应。
2019安徽省“江南十校”综合素质测试数学(理科)解析及评分标准一、选择题1. 答案 D 【解析】{2,2}A =−,故选D.2. 答案A 【解析】|i ||||||1i |2z z ====−,故选A.3. 答案C 【解析】标准方程为212x y =,故选C. 4. 答案B 【解析】由正弦定理知,sin sin 22cos sin sin 3B C C C C ===,cos 3C ∴= 25cos 22cos 1,9C C ∴=−=故选B. 5. 答案D 【解析】12AB AD ⋅=,2+3AE AB AD =,BD AB AD =−+ 212211(+)()1323326AE BD AB AD AB AD ⋅=⋅−+=−+−⨯=−,故选D. 6. 答案C 【解析】11121=2ABC A B C V L π−⋅三棱柱,故选C 7 .答案C 【解析】由已知得,24ππω=,112,()cos().223f x x πω∴==+故选C. 8 .答案A 【解析】由已知得()(),()f x f x y f x R −=−=且在上单调递增,22(3log )(log 1)f x f x ∴<−由可得223log log 1x x <−21log 2x ∴<−,解得:0x <<故选A. 9 .答案B 【解析】记(1,0)A ,则2224||2b c PF a −==,2214||22b c PF a a +=+=,1||1F A c =+, 2||1F A c =−,由角平分线性质得21122||||404||||PF F A c c c PF F A =⇒−=⇒=, 或作1AD PF ⊥于D ,由角平分线的对称性质知1112||||||||||24DF PF PD PF PF a =−=−==,2||||1AD AF c ==−,在1Rt ADF ∆中,222112||1,||||||AF c AF AF AD =+=+,解得4c =故12212214||||24.22PF F c S F F PF c ∆−=⨯=⋅=故选B. 10 .答案C 【解析】由已知,min min ()()f x g x ≥,由已知可得2min ()1),f x =+min ()3g x =,21)3,4k ∴+≥∴≥−故选C.11 .答案B 【解析】由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体,216245420,484S ππππ∴=⨯−−⨯+⨯+=+表故选B. 12 .答案C 【解析】前44组共含有数字:44(441)1980⨯+=个,198044(20191980)2019441975,S ∴=−+−=−=故选C.二、填空题13. 答案2 【解析】0,2x y ==时,min 3022z =⨯+=14. 答案1− 【解析】22sin cos 1sin 4cos 4αααα⋅=+,2tan 14tan 4αα=+,tan 2α=, []123tan =tan ()11123βαβα−+−==−+⨯. 15. 答案240 【解析】[]66()=()x y z x y z ++++,含2z 的项为24226T C()x y z =+⋅,所以形如2a b x y z 的项的系数之和为246C 2=240⋅.16.【解析】由已知动点P 落在以AB 为轴、该侧面与三棱锥侧面ACD 的交线为椭圆的一部分,设其与AC 的交点为P ,此时PB 最大,由P 到AB P 为AC 的中点,且2cos ,5BAC ∠=在BAP ∆中,由余弦定理可得 PB ==. 三、解答题17【解析】(1)由1232n n a a a a b ++++=①2n ≥时,123112n n a a a a b −−++++=②①−②可得:12()n n n a b b −=−(2)n ≥,∴3322()8a b b =−=∵12,0n a a =>,设{}n a 公比为q ,∴218a q =,∴2q =…………………………3分 ∴1222n n n a −=⨯=∴12312(12)222222212n nn n b +−=++++==−−,∴21n n b =−.…………6分 (2)证明:由已知:111211(21)(21)2121n n n n n n n n n a c b b +++===−⋅−−−−. ………………9分 ∴12312231111111212121212121n n n c c c c +++++=−+−++−−−−−−− 111121n +=−<−………………………………………………………………………………12分18 【解析】(1)∵2AB =,1A B ,160A AB ∠=,由余弦定理:22211112cos A B AA AB AA AB A AB =+−⋅∠,即21112303AA AA AA −−=⇒=或1−,故13AA =.………2分取BC 中点O ,连接1,OA OA ,∵ABC ∆是边长为2的正三角形, ∴AO BC ⊥,且AO =1BO =,由11A AB A AC ∆≅∆得到11A B AC ==1A O BC ⊥, 且1AO =, ∵22211AO A O AA +=,∴1AO A O ⊥,…………………4分又BC AO O =,故1A O ⊥平面ABC ,∵1A O ⊂平面1A BC , ∴平面1A BC ⊥平面ABC . ………………………………………6分(2)解法一:以O 为原点,OB 所在的直线为x 轴,取11B C 中点K ,以OK 所在的直线为y 轴,过O 作1OG AA ⊥,以OG所在的直线为z 轴建立空间直角坐标系.则111(1,0,0),(1,3,0),(1,3,0),B B C A −111(2,3,0),(0,3,0),(BC BB BA ∴=−==−……………………………………………8分设平面11ABB A 的一个法向量为(,,1)m x y =,则1130(2,0,1)020m BB y x m y m BA x y ⎧⋅==⎧=⎪⎪⇒⇒=⎨⎨=⎪⋅=−+=⎪⎩⎩设所求角为θ,则11||2sin39||||13BC m BC m θ⋅===…………………………………………………12分1解法二:以O 为原点,OB 所在的直线为x 轴,以1OA 所在的直线为y 轴,以OA 所在的直线为z 轴建立空间直角坐标系.则1(1,0,0),(1,0,0)B A A C ,设1(,,)C x y z ,由11=C A CA可得1(C −,11(2,6,3),(1,0,3),(1,BC AB BA ∴=−−=−=−……………………8分设平面11ABB A 的一个法向量为(,,)m x yz =,则110,(6,1,0y m AB x x m z m BA x ⎧=⎧⋅=−=⎪⎪==⎨⎨=⎪⋅=−=⎪⎩⎩取 设所求角为θ,则11||2sin 39||||13BC m BC m θ⋅===…………………………………………………12分 解法三:由(1)111111332C ABA AOA V BCS BC AO A O −==⨯⨯⨯⨯=设C 到平面11ABB A 的距离为h ,则由111//CC ABB A 面知1C 到平面11ABB A 的距离也为h ,则 111111sin 60332CABA ABA V hS h AB A A h −===⨯⨯⨯⨯︒==………………………………9分 设所求角为θ,则1sin h BC θ===………………………………………………………12分 19【解析】(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0123,,,. 0353381(0)56C C P C ξ===,12533815(1),56C C P C ξ=== 2130535333883010(2),(3)5656C C C C P P C C ξξ======………………………………………………………………4分 故ξ的分布列为:所求0123.565628288E ξ=⨯+⨯+⨯+⨯=………………………………………………………………6分(2)解法一:8882222111()72()8360i ii i i i x x x x x x ===−=⇒=−+⨯=∑∑∑ 888111()()34.5()()8226.5i i i i i i i i i xx y y x y x x y y x y ===−−=⇒=−−+⨯⨯=∑∑∑ 故去掉2015年的数据之后686483296,777x y ⨯−⨯−==== 2222255()736067672i i i i x x x x ≠≠−=−=−−⨯=∑∑ 5529()()7226.5637634.57i i i i i i x x y y x y x y ≠≠−−=−=−⨯−⨯⨯=∑∑…………………………9分 所以^34.50.4872b =≈,^^2934.56 1.27772a y b x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 解法二: 因为66x x ==,所以去掉2015年的数据后不影响^b 的值, 所以^34.50.4872b =≈, …………………………………………………………………………9分 而去掉2015年的数据之后686483296,777x y ⨯−⨯−====, ^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分注: 若有学生在计算^a 时用^0.48b ≈计算得^^290.486 1.267a yb x =−⋅=−⨯≈也算对。
高考数学精品复习资料
2019.5
安徽省“江南十校”高三联考
数
学(理科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 若复数63ai
i (其中R a
,i 为虚数单位)的实部与虚部相等,则a ()A. 3 B. 6 C. 9 D. 12
2. 已知命题
:p R x ,有2130x ,命题:q 02x 是2log 1x 的充分不必要条件,则下列命题为真命题的是(
)A. p B. p q C. p
q D. p q 3. 下列结论正确的是(
)A. 若直线
//l 平面,直线//l 平面,则//B. 若直线l
平面,直线l 平面,则//C. 若两直线1l . 2l 与平面所成的角相等,则12
//l l D. 若直线l 上两个不同的点
. 到平面的距离相等,则//l 4. 已知四个函数sin sin f x x ,sin cos g x x ,cos sin h x
x ,cos cos x x 在,x 上的图象如下,则函数与序号匹配正确的是(
)A. f x —①,g x —②,h x —③,x —④。
安徽“江南十校”2019年高三3月联考(数学理)word版数学〔理科〕第I卷〔选择题共50分〕一.选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项符合题目要求的.(1) 己知为虚数单位,假设(1-2i)(a +i)为纯虚数,那么a的值等于〔〕(A) -6 (B) -2(C) 2 (D) 6(2) 集合,那么等于〔〕(A)(B)(C)(D)(3) 假设双曲线的一个焦点为(2,0),那么它的离心率为〔〕(A) (B)(C) (D) 2(4) 现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动.假设每个社区至少一名义工,那么甲、乙两人被分到不同社区的概率为〔〕(A) (B) (C) (D)(5) 设函数在及上有定义对雅定的正数M,定义函数那么称函数为的“孪生函数”.假设给定函数,那么的值为〔〕(A) 2 (B) 1 (C) (D)(A) 对于命题,使得,那么,均有(B) “x=1”是“”的充分不必要条件(C) 命题“假设,那么x=l”的逆否命题为:“假设,那么”(D) 假设为假命题,那么p,g均为假命题(7)沿一个正方体三个面的对角线截得的几何体如下图,那么该几何体的左视图为〔〕(8)定义在上的函数,其导函数双图象如下图,那么以下表达正确的选项是〔〕(A)(B)(C)(D)(9)巳知函数.有两个不同的零点且方程,有两个不同的实根.假设把这四个数按从小到大排列构成等差数列,那么实数m的值为〔〕(A)(B)(C)(D)(10)假设不等式组表示的平面区三角形,那么实数K的取值范围是(A)(B)(C)(D)第II卷(非选择题共100分〕二填空题:本大题共5小题,每题5分.共W分.把答案填在题中的横线上.(11)在极坐标系中,直线被圆所截得的弦长为___________,(12)根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20〜80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,在某个时期某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,那么属于醉酒驾车的人数约为_________.(13)某程序框图如下图,该程序运行后输出的n的值是_________(14)如衝放置的正方形ABCD,AB=1.A,D分别在X轴、y轴的正半轴(含原点)上滑动,那么的最大值是_________.(15)如图是一副直角三角板.现将两三角板拼成直二面角,得到四面体ABCD,那么以下表达正确的选项是._________①;②平面BCD的法向量与平面ACD的法向量垂直;③异面直线BC与AD所成的角为60%④四面体有外接球;⑤直线DC与平面ABC所成的角为300三.解答题:本大题共6小題,共75分.解答应写出文字说明证明过程或演算步骤.(16) (本小题总分值12分〕设函数,,(w为常数,且m>0),函数f(x)的最大值为2.(I)求函数的单调递减区间;(II)a,b,c是的三边,且.假设,,求B的值.(17) (本小题总分值12分〕在等比数列中,,且,又的等比中项为16. (I)求数列的通项公式:(II)设,数列的前项和为,是否存在正整数k,使得对任意恒成立.假设存在,求出正整数k的最小值;不存在,请说明理由.(18) (本小题总分值12分〕“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和n(其中a+b=1)如果把100万元投资“传统型”经济项目,用表示投资收益〔投资收益=回收资金一投资资金),求的概率分布及均值〔数学期望〕;(II)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.(19)(本小题总分值12分〕如图,在多面体ABCDEFG中,四边形ABCD是边长为2的正方形,平面ABG、平面ADF、平面CDE都与平面ABCD垂直,且ΔABG,ΔADF,ΔCDE都是正三角形.(I)求证:AC//EF;(II)求多面体ABCDEFG 的体积. (20)(本小题总分值14分〕 设M 是由满足以下条件的函数构成的集合:①方程,有实数根②函数的导数满足.(I)假设函数为集合M 中的任意一个元素,证明:方程只有一个实数根;(II)判断函数是否是集合M 中的元素,并说明理由;(III)设函数为集合M 中的任意一个元素,对于定义域中任意,当,且时,证明:.(21)(本小题总分值13分〕如图,椭圆的中心在坐标原点,长轴端点为A ,B,右焦点为F,且.(I)求椭圆的标准方程; (II)过椭圆的右焦点F 作直线,直线l 1与椭圆分别交于点M,N ,直线l 2与椭圆分别交于点P,Q,且,求四边形MPNQ 的面积S 的最小值.2018年安徽省“江南十校”高三联考数学(理科)参考答案及评分标准一.选择题(1)B 【解析】i a a i a i )21()2())(21(-++=+-,由复数的定义有:⎩⎨⎧≠-=+02102a a ,∴2-=a .(2)A 【解析】由集合M 得,2122<-<-x 所以有2321<<-x ,由集合N 得1>x 故N M =⎭⎬⎫⎩⎨⎧<<231x x .(3)C 【解析】由412=+a ,那么3=a ,∴33232===a c e .(4)B 【解析】23232343516C A C A ⋅-=⋅.(5)B【解析】由题设,,12)(2≤-=x x f 那么当1-≤x 或1≥x 时,22)(xx f M-=;当11<<-x 时,1)(=x f M .∴1)0(=Mf .(6)D 【解析】假设q p ∧为假命题,那么q p ,中至少有一个为假命题,故D 选项错误. (7)B 【解析】由三视图可知.(8)C 【解析】考查函数)(x f 的特征图象可得:)()()(a f b f c f >>正确.(9)D 【解析】设两个根依次为)(,βαβα<.而函数)(x f y =的零点为23,2ππ,那么由图象可得:2322,232πππβαπβαπ+==+<<<.∴可求2365cos ,65-==∴=ππαm .(10)C 【解析】符合题意的直线在如图中的阴影区域内, 可求得320≤<k 或2-<k 、 二、填空题(11)34【解析】将直线与圆化成普通方程为:16,02222=+=-+y x y x ,进而可求得.(12)75【解析】由频率分布直方图得:75500)10005.01001.0(=⨯⨯+⨯.(13)4【解析】当1=n 时,S T S T ≤==,9,1;当2=n 时,S T S T ≤==,10,3;当3=n 时,S T S T ≤==,13,9;当4=n 时,,22,27==S T 不满足S T ≤,∴输出4=n . (14)2【解析】法一:取AD 的中点M ,连接OM .那么.212121121)(110)()(=⨯⨯+=+≤∙+=+∙+=∙+∙++=∙+∙+∙+∙=+∙+=∙法二:设θ=∠BAx ,那么)20(),cos sin ,(cos ),sin ,cos (sin πθθθθθθθ≤≤++C B,22sin 1cos sin sin cos cos sin )sin ,cos (sin )cos sin ,(cos 22≤+=+++=+∙+=∙∴θθθθθθθθθθθθθOB OC (15)①④⑤ 三、解答题(16)解:(Ⅰ)由题意)sin(2)(2ϕ++=x m x f又函数)(x f 的最大值为2,且0>m ,那么2,222=∴=+m m ……………………………………………………….2分∴)4sin(2cos 2sin 2)(π+=+=x x x x f由Zk k x k ∈+≤+≤+,232422πππππ………………………………………….4分 ∴Zk k x k ∈+≤≤+,45242ππππ 故函数)(x f 的单调递减区间是Z k k k ∈⎥⎦⎤⎢⎣⎡++,452,42ππππ…………………6分(Ⅱ)212222cos 22222=-≥-+=-+=ac ac ac ac ac c a ac b c a B ,当且仅当c a =时取等号、30,21cos 1π≤<∴≥>∴B B ……………………………….……………9分12,3)4sin(2)(ππ=∴=+=B B B f ……………………..………...……12分(17)解:(Ⅰ)由题163=a ,又823=-a a ,那么2,82=∴=q a∴12+=n n a …………………………………………………………….….....4分(Ⅱ)1411(3)log 2, (624)n n n n n n n b S b b +++==∴=+⋅⋅⋅+=分 )311(34)3(41+-=+=n n n n S n922)31211131211(34311...613151214111(341...111321<+-+-+-++=+-++-+-+-=++++∴n n n n n S S S S n …………………………………………………………………………………….10分 所以正整数k 可取最小值3…………………………………………..…….………...12分 (18)解:(Ⅰ)依题意,ξ的可能取值为20,0,—10,…………………………1分ξ的分布列为……………………………………………………………………………..………4分 1051)10(5105320=⨯-+⨯+⨯=ξE 〔万元〕…………………………….…6分 (Ⅱ)设η表示100万元投资投资“低碳型”经济项目的收益,那么η的分布列为20502030-=-=a b a E η……………………………………………….……10分依题意要求102050≥-a ,∴153≤≤a ……………………………………….…12分注:只写出53≥a ,扣1分. (19)解:(Ⅰ)证明:方法一,如图,分别取AD 、CD 的中点P 、Q ,连接FP ,EQ.∵△ADF 和△CDE 是为2的正三角形, ∴FP ⊥AD,EQ ⊥CD,且FP=EQ=3.又∵平面ADF 、平面CDE 都与平面ABCD 垂直, ∴FP ⊥平面ABCD ,EQ ⊥平面ABCD ,∴FP ∥QE 且FP=EQ ,∴四边形EQPF 是平行四边形,∴EF ∥PQ.……………………….……..4分 ∵PQ 是ACD ∆的中位线,∴PQ ∥AC,∴EF ∥AC ………………………………………………………………..……..6分方法二,以A 点作为坐标原点,以AB 所在直线为x 轴,以AD 所在直线为y 轴,过点A垂直于xOy 平面的直线为z 轴,建立空间直角坐标系,如下图、 根据题意可得,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),E(1,2,3),F(0,1,3),G(1,0,3).…………………………………………..………………..4分 ∴AC =〔2,2,0〕,=(1,1,0),那么AC =2,∴AC ∥,即有AC ∥FE ……………………………………………..……..6分 (Ⅱ)33833232=+=+=--ADEGF CDE ABG ABCDEFG V V V 四棱锥三棱柱多面体 (12)分(20)解:(Ⅰ)令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数,所以,方程0)(=x h ,即0)(=-x x f 至多有一解, 又由题设①知方程0)(=-x x f 有实数根,所以,方程0)(=-x x f 有且只有一个实数根…………………………………..4分 (Ⅱ)易知,)1,0()21,0(2121)('⊆∈-=x x g ,满足条件②; 令)1(32ln 2)()(>+--=-=x xx x x g x F , 那么12)(,0252)(22<+-=>+-=e e F e e F ,…………………………………..7分 又)(x F 在区间[]2,e e 上连续,所以)(x F 在[]2,e e 上存在零点0x ,即方程0)(=-x x g 有实数根[]20,e e x ∈,故)(x g 满足条件①,综上可知,M x g ∈)(……….……………………………...……….….…………9分 (Ⅲ)不妨设βα<,∵0)('>x f ,∴)(x f 单调递增, ∴)()(βαf f <,即0)()(>-αβf f ,令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数, ∴ααββ-<-)()(f f ,即αβαβ-<-)()(f f , ∴αβαβ-<-<)()(0f f , 那么有220122012)()(<-+-≤-<-βαβαβαf f (14)分(21)解:〔Ⅰ〕设椭圆的方程为)0(12222>>=+b a b y a x ,那么由题意知1=c , 又∵,1=∙即.2,1))((222=∴-==-+a c a c a c a ∴1222=-=c a b ,故椭圆的方程为:1222=+y x ……………………………………….…………….2分(Ⅱ)设),(),,(),,(),,(Q Q P P N N M M y x Q y x P y x N y x M .那么由题意+=+,即22222222)()()()()()()()(Q M Q M P N P N Q N Q N P M P M y y x x y y x x y y x x y y x x -+-+-+-=-+-+-+-整理得,0=--++--+Q N P M Q M P N Q N P M Q M P N y y y y y y y y x x x x x x x x即0))(())((=--+--Q P M N Q P M N y y y y x x x x所以21l l ⊥…………………………………………………………………..….…..6分(注:证明21l l ⊥,用几何法同样得分)①假设直线21,l l 中有一条斜率不存在,不妨设2l 的斜率不存在,那么可得x l ⊥2轴, ∴2,22==PQ MN ,故四边形MPNQ 的面积22222121=⨯⨯==MN PQ S …….…….…….7分 ②假设直线21,l l 的斜率存在,设直线1l 的方程:)0)(1(≠-=k x k y ,那么由⎪⎩⎪⎨⎧-==+)1(1222x k y y x 得,0224)12(2222=-+-+k x k x k设),(),,(2211y x N y x M ,那么1222,12422212221+-=+=+k k x x k k x x12)1(2212)22(4)124(14)(1122222222212212212++=+--++=-++=-+=k k k k k k kx x x x k x x k MN…………………………………………………………………………………….9分 同理可求得,222)1(22k k PQ ++=………………………….………….……….10分 故四边形MPNQ 的面积:1916211242)1(2212)1(222121222222±=⇔≥+++=++⨯++⨯==k kk k k k k MN PQ S 取“=”,综上,四边形MPNQ 的面积S 的最小值为916…………….………………….……13分。
2019年安徽省“江南十校”综合素质检测数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合}{2,1,0,1,2--=U ,{}U x x x A ∈>=,12,则=A C U{}2,2.-A {}1,1.-B {}2,0,2.-C {}1,0,1.-D2、复数iiz -=1(i 为虚数单位),则=-z22.A 2.B 21.C 2.D 3、抛物线22x y =的焦点坐标是⎪⎭⎫ ⎝⎛21,0.A ⎪⎭⎫ ⎝⎛0,21.B ⎪⎭⎫ ⎝⎛81,0.C ⎪⎭⎫ ⎝⎛0,81.D 4、在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C B c b 2,3,72===,则C 2cos 的值为37.A 95.B 94.C 47.D 5、已知边长为1的菱形ABCD 中,︒=∠60BAD ,点E 满足→→=EC BE 2,则→→•BD AE 的值是31.-A 21.-B 41.-C 61.-D5、我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.” 意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线)0(2L y x y ≤≤=绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,的截面圆的面积为l l ππ=2)(.由此构造右边的几何体1Z :其中⊥AC 平面α,πα=⊂=11,,AA AA L AC ,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且l FP PQ ==,π,则几何体Z 的体积为2.L A π3.L B π 221.L C π 321.L D π7、已知函数)0)(32cos()(>+=ωπωx x f 的最小正周期为π4,则下面结论正确的是 .A 函数)(x f 在区间()π,0上单调递增 .B 函数)(x f 在区间()π,0上单调递减 .C 函数)(x f 的图像关于直线32π=x 对称 .D 函数)(x f 的图像关于点⎪⎭⎫⎝⎛032,π对称8、设函数1313)(2+-•=x x x x f ,则不等式0)log 1()log 3(22<-+x f x f 的解集是⎪⎪⎭⎫ ⎝⎛22,0.A ⎪⎪⎭⎫ ⎝⎛+∞,22.B ()2,0.C ()+∞,2.D9、已知双曲线14222=-by x 的左、右焦点分别为21,F F ,P 为右支上一点且直线2PF 与x 轴垂直,若21PF F ∠的角平分线恰好过点()0,1,则21F PF ∆的面积为12.A 24.B 36.C 48.D10. 已知函数()()xeInxx x g x k x x f -=+-=4,11(e 是自然对数的底数),若对()[]3,1,1,021∈∃∈∀x x ,使得)()(21x g x f ≥成立,则正数k 的最小值为21.A 1.B 324.-C 324.+D 11. 如图,网格线上的小正方形的边长为1,粗线(实线、虚线)画出的某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为20.A 420.π+B 4320.π+C 4520.π+D12. 计算机内部运算通常使用的是二进制,用1和0两个数字与电脑的通和断两种状态相对应。
2019届安徽省高三上学期第一次联考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={1,2,3,4},B={x|y=log(3﹣x)},则A∩B=()2A.{1,2} B.{1,2,3} C.{1,2,3,4} D.{4}2.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率是()A.B.C.D.不确定3.将函数y=sin2x的图象先向左平行移动个单位长度,再向上平行移动1个单位长度,得到的函数解析式是()A.y=sin(2x﹣)+1 B.y=sin(2x+)+1 C.y=sin(2x+)+1 D.y=sin(2x﹣)+14.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C.2πD.5.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.66.若变量x、y满足约束条件,则z=的最小值为()A.0 B.1 C.2 D.37.已知{an }为等差数列,a1+a2+a3=156,a2+a3+a4=147,{an}的前n项和为Sn,则使得Sn达到最大值的n是()A.19 B.20 C.21 D.228.设m、n是两条不同的直线α、β是两个不同的平面,有下列四个命题:①如果α∥β,m⊂α,那么m∥β;②如果m⊥α,β⊥α,那么m∥β;③如果m⊥n,m⊥α,n∥β,那么α⊥β;④如果m∥β,m⊂α,α∩β=n,那么m∥n其中正确的命题是()A.①② B.①③ C.①④ D.③④9.已知函数f(x)=是R上的增函数,则实数a的取值范围是()A.﹣1<a<1 B.﹣1<a≤1 C.D.10.设a>b>0,a+b=1,且x=()b,y=log ab,z=log a,则x、y、z的大小关系是()A.y<z<x B.z<y<x C.x<y<z D.y<x<z11.已知A、B是球O的球面上两点,且∠AOB=120°,C为球面上的动点,若三棱锥O﹣ABC体积的最大值为,则球O的表面积为()A.4πB.C.16π D.32π12.设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=2x,若对x∈[1,2],不等式af(x)+g(2x)≥0恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是.14.已知,则sin2x= .15.设函数f(x)=sin(wx+φ),其中|φ|<.若f(﹣)≤f(x)≤f()对任意x∈R恒成立,则正数w的最小值为,此时,φ= .16.已知,满足||=||=•=2,且(﹣)•(﹣)=0,则|2﹣|的最小值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.我国是世界上严重缺水的国家.某市政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3.5吨的人数,并说明理由;(3)若在该选取的100人的样本中,从月均用水量不低于3.5吨的居民中随机选取3人,求至少选到1名月均用水量不低于4吨的居民的概率.18.如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.19.如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,BC=,F为BE的中点.(1)若CE=2,求证:①DF∥平面ABC;②平面BDE⊥平面BCE;(2)若二面角E﹣AB﹣C为45°,求直线AE与平面BCE所成角.20.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n =(n+1)a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =,数列{b n }的前n 项和为T n ,试比较T n 与的大小.21.如图,已知直线l :y=x+4,圆O :x 2+y 2=3,直线m ∥l .(1)若直线m 与圆O 相交,求直线m 纵截距b 的取值范围;(2)设直线m 与圆O 相交于C 、D 两点,且A 、B 为直线l 上两点,如图所示,若四边形ABCD 是一个内角为60°的菱形,求直线m 纵截距b 的值.22.已知a >0,b ∈R ,函数f (x )=4ax 2﹣2bx ﹣a+b 的定义域为[0,1].(Ⅰ)当a=1时,函数f (x )在定义域内有两个不同的零点,求b 的取值范围;(Ⅱ)记f (x )的最大值为M ,证明:f (x )+M >0.2017-2018学年安徽省“江淮十校”高三(上)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(3﹣x)},则A∩B=()1.若集合A={1,2,3,4},B={x|y=log2A.{1,2} B.{1,2,3} C.{1,2,3,4} D.{4}【考点】交集及其运算.【分析】根据对数函数的定义求出集合B中元素的范围,再由交集的定义求出A∩B即可.【解答】解:∵A={1,2,3,4},B={x|y=log(3﹣x)}={x|x<3},2则A∩B={1,2},故选:A.2.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率是()A.B.C.D.不确定【考点】几何概型;任意角的三角函数的定义.【分析】根据题意确定为几何概型中的长度类型,将长度为3m的绳子分成相等的三段,在中间一段任意位置剪断符合要求,从而找出中间1m处的两个界点,再求出其比值.【解答】解:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率.故选B3.将函数y=sin2x的图象先向左平行移动个单位长度,再向上平行移动1个单位长度,得到的函数解析式是()A.y=sin(2x﹣)+1 B.y=sin(2x+)+1 C.y=sin(2x+)+1 D.y=sin(2x﹣)+1【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】第一次变换可得可得函数y=sin2(x+)的图象,第二次变换可得函数y=sin2(x+)+1的图象,从而得出结论.【解答】解:将函数y=sin2x的图象先向左平行移动个单位长度,可得函数y=sin2(x+)的图象,再向上平行移动1个单位长度,可得函数y=sin2(x+)+1=sin(2x+)+1 的图象,故选B.4.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C.2πD.【考点】由三视图求面积、体积.【分析】由三视图可以看出,此几何体是一个上部为半圆锥、下部为圆柱的几何体,故可以分部分求出半圆锥与圆柱的体积再相加求出此简单组合体的体积.【解答】解:所求几何体为一个圆柱体和半圆锥体构成.其中半圆锥的高为2.其体积为=,圆柱的体积为π•12•1=π故此简单组合体的体积V=π+=.故选:A.5.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.6【考点】循环结构.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是判断S=>0.8时,n+1的值.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.则输出的n=4故选B.6.若变量x、y满足约束条件,则z=的最小值为()A.0 B.1 C.2 D.3【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用目标函数的几何意义:平面区域内的一点与原点连线的斜率求最小值【解答】解:作出的可行域如图所示的阴影部分,由于z==1+2的几何意义是平面区域内的一点与原点连线的斜率的2倍加1,结合图形可知,直线OA的斜率最小,由可得A(2,1),此时z===2.故选:C.7.已知{an }为等差数列,a1+a2+a3=156,a2+a3+a4=147,{an}的前n项和为Sn,则使得Sn达到最大值的n是()A.19 B.20 C.21 D.22【考点】等差数列的前n项和.【分析】写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件.【解答】解:设{an}的公差为d,由题意得:a 1+a2+a3=a1+a1+d+a1+2d=156,即a1+d=52,①a 2+a3+a4=a1+d+a1+2d+a1+3d=147,即a1+2d=49,②由①②联立得a1=55,d=﹣3,∴Sn=55n+×(﹣3)=﹣n2+n=﹣(n﹣)2+.∴观察选项,当n=19时,使得Sn达到最大值.故选:A.8.设m、n是两条不同的直线α、β是两个不同的平面,有下列四个命题:①如果α∥β,m⊂α,那么m∥β;②如果m⊥α,β⊥α,那么m∥β;③如果m⊥n,m⊥α,n∥β,那么α⊥β;④如果m∥β,m⊂α,α∩β=n,那么m∥n其中正确的命题是()A.①② B.①③ C.①④ D.③④【考点】命题的真假判断与应用.【分析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①如果α∥β,m⊂α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确故选:C9.已知函数f(x)=是R上的增函数,则实数a的取值范围是()A.﹣1<a<1 B.﹣1<a≤1 C.D.【考点】分段函数的应用.【分析】根据f(x)在R上单调递增便可知,二次函数x2﹣2ax+2在[1,+∞)上单调递增,一次函数(a+1)x+1在(﹣∞,1)上单调递增,列出不等式,即可得出实数a的取值范围.【解答】解:函数f(x)=是R上的增函数,;∴当x≥1时,f(x)=x2﹣2ax+2为增函数;∴a≤1;当x<1时,f(x)=(a+1)x+1为增函数;∴a+1>0;∴a >﹣1;且a+2≤3﹣2a ;解得;∴实数a 的取值范围为:(﹣1,].故选:D .10.设a >b >0,a+b=1,且x=()b ,y=log ab ,z=log a ,则x 、y 、z 的大小关系是( )A .y <z <xB .z <y <xC .x <y <zD .y <x <z【考点】对数值大小的比较.【分析】由已知得到a ,b 的具体范围,进一步得到ab ,,的范围,结合指数函数与对数函数的性质得答案.【解答】解:由a >b >0,a+b=1,得0,,且0<ab <1,则,,a <,∴x=()b >0,y=logab=﹣1,0=>z=log a >=﹣1,∴y <z <x .故选:A .11.已知A 、B 是球O 的球面上两点,且∠AOB=120°,C 为球面上的动点,若三棱锥O ﹣ABC 体积的最大值为,则球O 的表面积为( )A .4πB .C .16πD .32π 【考点】球的体积和表面积.【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ﹣ABC 的体积最大,利用三棱锥O ﹣ABC 体积的最大值为,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC =V C ﹣AOB ==,故R=2,则球O 的表面积为4πR 2=16π,故选:C .12.设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=2x,若对x∈[1,2],不等式af(x)+g(2x)≥0恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.C.D.【考点】函数奇偶性的性质.【分析】先根据函数奇偶性定义,解出奇函数f(x)和偶函数g(x)的表达式,将这个表达式不等式af(x)+g(2x)≥0,令t=2x﹣2﹣x,则t>0,通过变形可得a≥﹣(t+),讨论出右边在x∈[1,2]的最大值,可以得出实数a的取值范围.【解答】解:∵f(x)为定义在R上的奇函数,g(x)为定义在R上的偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x)又∵由f(x)+g(x)=2x,结合f(﹣x)+g(﹣x)=﹣f(x)+g(x)=2﹣x,∴f(x)=(2x﹣2﹣x),g(x)=(2x+2﹣x)不等式af(x)+g(2x)≥0,化简为(2x﹣2﹣x)+(22x+2﹣2x)≥0∵1≤x≤2∴≤2x﹣2﹣x≤令t=2x﹣2﹣x,则t>0,因此将上面不等式整理,得:a≥﹣(t+).∵≤t≤∴≤t+≤∴a≥﹣.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是x﹣y+1=0 .【考点】直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系.【分析】先求圆心,再求斜率,可求直线方程.【解答】解:易知点C为(﹣1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x﹣y+1=0.故答案为:x﹣y+1=0.14.已知,则sin2x= .【考点】二倍角的正弦.【分析】由诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算求值.【解答】解:∵,∴.故答案为:.15.设函数f(x)=sin(wx+φ),其中|φ|<.若f(﹣)≤f(x)≤f()对任意x∈R恒成立,则正数w的最小值为 2 ,此时,φ= ﹣.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】直接利用函数的周期的最大值,即可求解ω的最小值.通过函数的最大值求出φ【解答】解:因为函数f(x)=sin(ωx+φ),其中|φ|<.若f(﹣)≤f(x)≤f()对任意x∈R恒成立,所以的最大值为:,所以正数ω的最小值为:,ω=2,因为函数的最大值为f(),所以2×=,所以φ=,故答案为:2,.16.已知,满足||=||=•=2,且(﹣)•(﹣)=0,则|2﹣|的最小值为﹣1 .【考点】平面向量数量积的运算.【分析】求出的夹角,建立平面直角坐标系,设=(2,0),则=(1,),根据数量积的几何意义得出C的轨迹,利用点到圆的最短距离求出|2﹣|的最小值.【解答】解:∵||=||=•=2,∴cos<>==,∴<>=60°.设=(2,0),==(1,),,∵(﹣)•(﹣)=0,∴,∴C的轨迹为以AB为直径的圆M.其中M(,),半径r=1.延长OB到D,则D(2,2).连结DM,交圆M于C点,则CD为|2﹣|的最小值.DM==.∴CD=.故答案为:﹣1.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.我国是世界上严重缺水的国家.某市政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3.5吨的人数,并说明理由;(3)若在该选取的100人的样本中,从月均用水量不低于3.5吨的居民中随机选取3人,求至少选到1名月均用水量不低于4吨的居民的概率.【考点】古典概型及其概率计算公式;频率分布直方图.【分析】(1)由频率统计相关知识,各组频率之和的值为1,由此能求出a.(2)由图求出不低于3.5吨人数所占百分比,由此能估计全市月均用水量不低于3.5吨的人数.(3)由不低于3.5吨人数所占百分比为6%,得该选取的100人的样本中,月均用水量不低于3.5吨的居民有6人,其中[3.5,4)之间有4人,[4,4.5)之间有2人,由此能求出从6人中取出3人,至少选到1名月均用水量不低于4吨的居民的概率.【解答】解:(1)由频率统计相关知识,各组频率之和的值为1,∵频率=,∴0.5×(a+0.16+0.3+0.4+0.52+0.3+0.12+a+0.04)=1得a=0.08.(2)由图,不低于3.5吨人数所占百分比为0.5×(0.08+0.04)=6%,∴估计全市月均用水量不低于3.5吨的人数为:30×6%=1.8(万),(3)由(2)不低于3.5吨人数所占百分比为0.5×(0.08+0.04)=6%,因此该选取的100人的样本中,月均用水量不低于3.5吨的居民有100×6%=6人,其中[3.5,4)之间有4人,[4,4.5)之间有2人,从6人中取出3人,共有=20种取法,利用互斥事件分类讨论,3人中在[4,4.5)之间有1人,[3.5,4)之间有2人,共有12种取法,3人中在[4,4.5)之间有2人,[3.5,4)之间有1人,共有4种取法,所以至少选到1名月均用水量不低于4吨的居民的概率为:p==.18.如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【考点】余弦定理的应用.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.19.如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,BC=,F为BE的中点.(1)若CE=2,求证:①DF∥平面ABC;②平面BDE⊥平面BCE;(2)若二面角E﹣AB﹣C为45°,求直线AE与平面BCE所成角.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)①取BC作的中点G,连接GF,GA,证明四边形AGFD为平行四边形得出DF∥AG,故而DF∥平面ABC;②证明AG⊥平面BCE,得出DF⊥平面BCE,于是平面BDE⊥平面BCE;(2)连接AE,则∠EAC=45°,由AG⊥平面BCE得出∠AEG为所求角,利用勾股定理计算AG,AE,即可得出sin∠AEG.【解答】证明:(1)①取BC作的中点G,连接GF,GA,∴GF为三角形BCE的中位线,∴GF∥CE,GF=CE,∵DA⊥平面ABC,EC⊥平面ABC,∴DA∥CE,又DA=CE,∴GF∥AD,GF=AD.∴四边形GFDA为平行四边形,∴AG∥FD,又GA⊂平面ABC,DF⊄平面ABC,∴DF∥平面ABC.②∵AB=AC,G为BC的中点,∴AG⊥BC,∵CE⊥平面ABC,CE⊂平面BCE,∴平面BCE⊥平面ABC,又平面BCE∩平面ABC=BC,AG⊂平面ABC,∴AG⊥平面BCE,∵AG∥FD,∴FD⊥平面BCE,又FD⊂平面BDE,∴平面BDE⊥平面BCE.(2)连接AE.∵AD⊥平面ABC,AB⊂平面ABC,∴AD⊥AB,∵AB=AC=1,BC=,∴AC ⊥AB ,又AC ⊂平面ACE ,AD ⊂平面ACE ,AC∩AD=A,∴AB ⊥平面ACE ,又AE ⊂平面ACE ,∴AB ⊥AE ,∴E ﹣AB ﹣C 的平面角为∠EAC=45°,∴CE=AC=1;由(1)可知AG ⊥平面BCE ,∴直线AE 与平面BCE 所成角为∠AEG .∵AB=AC=1,AB ⊥AC ,∴AG=BC=,AE==,∴,∴∠AEG=30°.20.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n =(n+1)a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =,数列{b n }的前n 项和为T n ,试比较T n 与的大小.【考点】数列的求和;数列递推式.【分析】(1)由2S n =(n+1)a n ,当n ≥2,2S n ﹣1=na n ﹣1,两式相减可知:,即,a n =n ;(2)由(1)可知:,采用“裂项法”即可求得数列{b n }的前n 项和为T n ,即可比较T n 与的大小.【解答】解:(1)∵,∴,两式相减得:,…∴(n ≥2,且n ∈N *),又,∴,=n…∴an(2)由(1)可得…∴,=…21.如图,已知直线l:y=x+4,圆O:x2+y2=3,直线m∥l.(1)若直线m与圆O相交,求直线m纵截距b的取值范围;(2)设直线m与圆O相交于C、D两点,且A、B为直线l上两点,如图所示,若四边形ABCD是一个内角为60°的菱形,求直线m纵截距b的值.【考点】圆方程的综合应用;直线与圆的位置关系.【分析】(1)利用m∥l,求出直线l;设直线m的方程,利用设圆心O到直线m的距离为d,通过直线m与圆O相交,求解即可.(2)求出CD,利用AB与CD之间的距离,结合求解即可.【解答】解:(1)∵m∥l,直线,∴可设直线,即,设圆心O到直线m的距离为d,又因为直线m与圆O相交,∴,…即,∴…(2)由,①…AB与CD之间的距离,②…又③…联立①②③得到:b2﹣2b﹣5=0,又,解得:或…22.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b的定义域为[0,1].(Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;(Ⅱ)记f(x)的最大值为M,证明:f(x)+M>0.【考点】二次函数的性质.【分析】(1)由题意可得f(0)≥0,f(1)≥0,△>0,0<<1,解不等式即可得到所求范围;(2)求出对称轴,讨论对称轴和区间[0,1]的关系,可得最值,即可证明f(x)+M>0.【解答】解:(1)由题意可得f(x)=4x2﹣2bx﹣1+b在[0,1]内有两个不同的零点,即有,解得1≤b<2或2<b≤3;(2)记f(x)的最大值为M,证明:f(x)+M>0.只需证明f(x)最小值+M>0即可,设f(x)的最小值是m,问题转化为证明M+m>0,证明如下:f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得M=f(0)=b﹣a,m=f(1)=3a﹣b,则M+m=2a>0;当<0时,区间[0,1]为增区间,可得m=f(0)=b﹣a,M=f(1)=3a﹣b,则M+m=2a>0;当0≤≤1时,区间[0,]为减区间,[,1]为增区间,可得m=f()=,若f(0)≤f(1),即b≤2a,可得M=f(1)=3a﹣b,M+m=≥=a>0;若f(0)>f(1),即2a<b≤4a,可得M=f(0)=b﹣a,M+m==,由于2a<b≤4a,可得M+m∈(a,2a],即为M+m>0.综上可得:f(x)max +f(x)min>0恒成立,即f(x)+M>0.。
2019安徽省“江南十校”综合素质测试数学(理科)解析及评分标准一、选择题1. 答案D 【解析】{2,2}A =−,故选 D.2. 答案A 【解析】|i ||||||1i |2z z ====−,故选A. 3. 答案C 【解析】标准方程为212x y =,故选C. 4. 答案B 【解析】由正弦定理知,sin sin 22cos sin sin 3B C C C C ===,cos 3C ∴= 25cos 22cos 1,9C C ∴=−=故选B.5. 答案D 【解析】12AB AD ⋅=,2+3AE AB AD =,BD AB AD =−+ 212211(+)()1323326AE BDAB AD AB AD ⋅=⋅−+=−+−⨯=−,故选D.6. 答案C 【解析】11121=2ABC A B C V L π−⋅三棱柱,故选C7 .答案C 【解析】由已知得,24ππω=,112,()cos().223f x x πω∴==+故选C. 8 .答案A 【解析】由已知得()(),()f x f x y f x R −=−=且在上单调递增,22(3log )(log 1)f x f x ∴<−由可得223log log 1x x <−21log 2x ∴<−,解得:0x <<故选A.9 .答案B 【解析】记(1,0)A ,则2224||2b c PF a −==,2214||22b c PF a a +=+=,1||1F A c =+, 2||1F A c =−,由角平分线性质得21122||||404||||PF F A c c c PF F A =⇒−=⇒=,或作1AD PF ⊥于D ,由角平分线的对称性质知1112||||||||||24DF PF PD PF PF a =−=−==,2||||1AD AF c ==−,在1Rt ADF ∆中,222112||1,||||||AF c AF AF AD =+=+,解得4c = 故12212214||||24.22PF F c S F F PF c ∆−=⨯=⋅=故选B. 10 .答案C 【解析】由已知,min min ()()f x g x ≥,由已知可得2min ()1),f x =+min ()3g x =,21)3,4k ∴+≥∴≥−故选C.11 .答案B 【解析】由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体,216245420,484S ππππ∴=⨯−−⨯+⨯+=+表故选B. 12 .答案C 【解析】前44组共含有数字:44(441)1980⨯+=个,198044(20191980)2019441975,S ∴=−+−=−=故选C. 二、填空题13. 答案2 【解析】0,2x y ==时,min 3022z =⨯+= 14. 答案1− 【解析】22sin cos 1sin 4cos 4αααα⋅=+,2tan 14tan 4αα=+,tan 2α=,[]123tan =tan ()11123βαβα−+−==−+⨯. 15. 答案240 【解析】[]66()=()x y z x y z ++++,含2z 的项为24226T C()x y z =+⋅,所以形如2a b x y z 的项的系数之和为246C 2=240⋅.16.【解析】由已知动点P 落在以AB 为轴、该侧面与三棱锥侧面ACD 的交线为椭圆的一部分,设其与AC 的交点为P ,此时PB 最大,由P 到AB P 为AC 的中点,且2cos ,5BAC ∠=在BAP ∆中,由余弦定理可得 PB ==. 三、解答题17【解析】(1)由1232n n a a a a b ++++=①2n ≥时,123112n n a a a a b −−++++=②①−②可得:12()n n n a b b −=−(2)n ≥,∴3322()8a b b =−=∵12,0n a a =>,设{}n a 公比为q ,∴218a q =,∴2q =…………………………3分 ∴1222n n n a −=⨯=∴12312(12)222222212n nn n b +−=++++==−−,∴21n n b =−.…………6分(2)证明:由已知:111211(21)(21)2121n n n n n n n n n a c b b +++===−⋅−−−−. ………………9分 ∴12312231111111212121212121n n n c c c c +++++=−+−++−−−−−−− 111121n +=−<−………………………………………………………………………………12分18 【解析】(1)∵2AB =,1A B ,160A AB ∠=,由余弦定理:22211112cos A B AA AB AA AB A AB =+−⋅∠,即21112303AA AA AA −−=⇒=或1−,故13AA =.………2分取BC 中点O ,连接1,OA OA ,∵ABC ∆是边长为2的正三角形,∴AO BC ⊥,且AO =1BO =,由11A AB A AC ∆≅∆得到11A B AC ==1A O BC ⊥, 且1AO =, ∵22211AO A O AA +=,∴1AO A O ⊥,…………………4分 又BCAO O =,故1A O ⊥平面ABC ,∵1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC . ………………………………………6分 (2)解法一:以O为原点,OB 所在的直线为x 轴,取11B C 中点K ,以OK 所在的直线为y 轴,过O 作1OG AA ⊥,以OG所在的直线为z 轴建立空间直角坐标系.则111(1,0,0),(1,3,0),(1,3,0),B B C A −111(2,3,0),(0,3,0),(1,2,2)BC BB BA ∴=−==−……………………………………………8分设平面11ABB A 的一个法向量为(,,1)m x y =,则 11302(2,0,1)0220m BB y x m y m BA x y ⎧⋅==⎧=⎪⎪⇒⇒=⎨⎨=⎪⋅=−++=⎪⎩⎩设所求角为θ,则11||22278sin .39||||133BC m BC m θ⋅===…………………………………………………12分1解法二:以O 为原点,OB 所在的直线为x 轴,以1OA 所在的直线为y 轴,以OA 所在的直线为z 轴建立空间直角坐标系.则1(1,0,0),(1,0,0)B A A C ,设1(,,)C x y z ,由11=C A CA可得1(C −,11(2,6,3),(1,0,3),(1,6,0)BC AB BA ∴=−−=−=−……………………8分设平面11ABB A 的一个法向量为(,,)m x y z =,则1130,6(6,1,2)260y m AB x z x m z m BA x y ⎧=⎧⋅=−=⎪⎪=⇒⇒=⎨⎨=⎪⋅=−+=⎪⎩⎩取 设所求角为θ,则11||26278sin .39||||133BC m BC m θ⋅===⋅…………………………………………………12分 解法三:由(1)111111332C ABA AOA V BCSBCAO A O −==⨯⨯⨯⨯= 设C 到平面11ABB A 的距离为h ,则由111//CC ABB A 面知1C 到平面11ABB A 的距离也为h ,则111111sin60332C ABA ABA V hSh AB A A h −===⨯⨯⨯⨯︒==………………………………9分 设所求角为θ,则1sin h BC θ===………………………………………………………12分 19【解析】(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0123,,,. 0353381(0)56C C P C ξ===,12533815(1),56C C P C ξ===2130535333883010(2),(3)5656C C C C P P C C ξξ======………………………………………………………………4分 故ξ的分布列为:所求0123.565628288E ξ=⨯+⨯+⨯+⨯=………………………………………………………………6分(2)解法一:8882222111()72()8360i ii i i i x x x x x x ===−=⇒=−+⨯=∑∑∑888111()()34.5()()8226.5ii i i i i i i i xx y y x y x x y y x y ===−−=⇒=−−+⨯⨯=∑∑∑故去掉2015年的数据之后686483296,777x y ⨯−⨯−==== 2222255()736067672i i i i x x x x ≠≠−=−=−−⨯=∑∑5529()()7226.5637634.57i i i i i i x x y y x y x y ≠≠−−=−=−⨯−⨯⨯=∑∑…………………………9分 所以^34.50.4872b =≈,^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 解法二: 因为66x x ==,所以去掉2015年的数据后不影响^b 的值, 所以^34.50.4872b =≈, …………………………………………………………………………9分 而去掉2015年的数据之后686483296,777x y ⨯−⨯−====, ^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 注: 若有学生在计算^a 时用^0.48b ≈计算得^^290.486 1.267a yb x =−⋅=−⨯≈也算对。
安徽省江淮十校2019届高三上学期第一次联考数学(理)试题一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|≥0},N={x|≤8},则()A. B.C. D.2.已知复数z=(a∈R,/为虚数单位),若z是纯虚数,则a的值为()A. B. 0或1 C. D. 03.已知等差数列{a n}满足a1+a3+a5=12,a10+a11+a12=24,则{a n}的前13项的和为()A. 12B. 36C. 78D. 1564.非直角三角形ABC的三内角A,B,C的所对的边分别为a,b,c,则”a<b”是”tan A<tan B”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件5.已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2+2x+m cos x,记a=-3f(-3),b=-2f(-2),c=4f(4),则a,b,c的大小关系为()A. B. C. D.6.已知t=2cos2xdx,则执行程序框图,输出的S的值为()A.B. 2C.D.7.如图是一个几何体的三视图,若该几何体的表面积为48π,则a的值为()A. lB. 2C. 3D. 48.已知函数(x)=sin2x-2cos2x,将f(x)的图象上的所有点的横坐标缩短为原来的,纵坐标不变,再把所得图象向上平移1个单位长度,得到函数g(x)的图象,若g(x1)•g(x2)=-4,则|x1-x2|的值可能为()A. B. C. D.9.已知抛物线x2=4y的焦点为F,过点P(2,1)作抛物线的切线交y轴于点M,若点M关于直线y=x的对称点为N,则S△FPN的面积为()A. 2B. 1C.D.10.已知函数f(x)=x3-x的零点构成集合P,若x i∈P(i∈N})(x l,x2,x3,x4可以相等),则满足条件“x12+x22+x32+x42≤4”的数组(x l,x2,x3,x4)的个数为()A. 92B. 81C. 64D. 6311.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是()A. B. C. D.12.已知函数f(x)=,>,,存在x l,x2,…,x m,满足==…==m,则当n最大时,实数m的取值范围为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知△ABC中,||=|-|,=(1,-1),AB的中点D的坐标为(3,1),点C的坐标为(2,m),则m=______.14.已知实数x,y满足>,则z=4x-3y+1的最大值为______15.若(x+a)9=a0+a1(x+l)+a2(x+l)2+…+a9(x+l)9,当a5=126时,实数a的值为______16.如图,四边形ABCD内接于圆O,若AB=1,AD=2,BC=BD cos∠DBC+CD sin∠BCD,则S△BCD的最大值为______.三、解答题(本大题共6小题,共70.0分)17.已知数列{a n}的前n项和为S n,且满足S n=2a n-n.(1)求数列{a n}的通项公式;(2)求a1+a3+a s+…+a2n+1•18.在△ABC中,角A,B,c的对边分别为a,b,c,且c sin(-A)是a sin(-B)与b cos A的等差中项.(1)求角A的大小;(2)若2a=b+c,且△ABC的外接圆半径为1,求△ABC的面积.19.如图,直三棱柱ABC-A1B1C1内接于圆柱OO1,且AB,A1B1分别为圆O,圆O l的直径,AC=BC=2,AA1=3,D为B1C1的中点,点E满足=(λ∈[0,1]).(1)求证:当λ=时,A1D∥平面B1CE;(2)试确定实数λ的值,使平面COE与平面CBB1C1所成的锐二面角的余弦值为.20.2018年7月,某省平均降雨量突破了历史极值,为了研究降雨分布的规律性,水文部门统计了7月12日8时一7月13日8时降雨量较大的某县的20个乡镇的降雨量情况,列出降雨量的茎叶图如下(单位:mm)(1)以这20个乡镇降雨量的平均数估测全县的平均降雨量,求出这个平均值(保留整数);(2)从这20个乡镇的水文资料中任意抽取3个乡镇的资料进行数据分析(i)求至少抽到一个高于平均降雨量的乡镇的概率;(ii)对降雨量不低于70mm,的乡镇要发出特急防洪通知,设X=“需发出特急防洪通知的乡镇的个数”,写出X的分布列,并求出E(X).21.已知椭圆C:=1(a>b>0)的离心率为,且P(,1)在椭圆C上.(1)求椭圆C的标准方程;(2)经过点(2,0)的动直线l与椭圆C交于A,B两点,判断在x轴上是否存在定点D,使得的值为定值.若存在,求出定点D的坐标;若不存在,请说明理由.22.已知函数f(x)=a ln x-x-b(a,b∈R).(1)讨论函数f(x)的单调性;(2)当a=l时,若函数f(x)恰有两个不同的零点x1,x2求实数b的取值范围,并证明f()<0.答案和解析1.【答案】D【解析】解:M={x|-2≤x<3},N={x|-1≤x≤3};∴M N={x|-2≤x≤3},M∩N={x|-1≤x<3}.故选:D.可解出集合M,N,然后进行并集、交集的运算即可.考查描述法的定义,以及并集、交集的运算,分式不等式的解法.2.【答案】C【解析】解:z===+i,若z是纯虚数,则,即,得a=-1,故选:C.根据复数的运算法则进行化简,结合复数z是纯虚数,建立不等式关系进行求解即可.本题主要考查复数的有关概念,结合复数的基本运算进行化简是解决本题的关键.3.【答案】C【解析】解:∵等差数列{a n}满足a1+a3+a5=12,a10+a11+a12=24,∴a1+a3+a5=3a3=12,a10+a11+a12=3a11=24,解得a3=4,a11=8,∴{a n}的前13项的和为:===78.故选:C.利用等差数列的通项公式求出a3=4,a11=8,由此能求出{a n}的前13项的和.本题考查等差数列的前13项和的求法,考查等差数列、等比数列的性质等基础知识,考查运算求解能力,是基础题.4.【答案】A【解析】解:a<b⇔A<B,设A=30°,B=120°,30°<120°,但tan30°>0>tan120°,tan120°<tan30°,但120°>30°,即a<b推不出tanA<tanBtanA<tanB推不出a<b,∴”a<b”是”tanA<tanB”的既不充分也不必要条件故选:A.根据充分条件和必要条件的定义结合大角对大边进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义结合大角对大边是解决本题的关键.5.【答案】A【解析】解:根据题意,f(x)为定义在R上的奇函数,则有f(0)=0,又由当x≥0时,f(x)=x2+2x+mcosx,则f(0)=m=0,即m=0,则当x≥0时,f(x)=x2+2x,设g(x)=xf(x),若f(x)为定义在R上的奇函数,即f(-x)=-f(x),则g(-x)=(-x)f(-x)=xf(x)=g(x),函数g(x)为偶函数,当x≥0时,f(x)=x2+2x,则g(x)=x3+2x2,有g′(x)=3x2+4x≥0,则函数g(x)在[0,+∞)上为增函数;又由a=-3f(-3)=g(-3)=g(3),b=-2f(-2)=g(-2)=g(2),c=4f(4)=g(4),则有b<a<c;故选:A.根据题意,由奇函数的性质可得f(0)=0,结合函数的解析式可得f(0)=m=0,即m=0,即可得当x≥0时,f(x)=x2+2x,设g(x)=xf(x),分析可得g(x)为偶函数且在[0,+∞)上为增函数,进而可得a=-3f(-3)=g(-3)=g(3),b=-2f(-2)=g(-2)=g(2),c=4f(4)=g(4),结合函数的单调性分析可得答案.本题考查函数的单调性与奇偶性的综合应用,关键是构造新函数g(x)=xf(x).6.【答案】B【解析】解:t=2cos2xdx=sin2x|=sin=1,由程序框图得S=lg+lg+…+lg=lg(••…•)=lg100=2,故输出S=2,故选:B.根据积分定义,先求出t=1,结合程序框图进行计算即可.本题主要考查程序框图的识别和判断,利用验算法进行验证是解决本题的关键.7.【答案】B【解析】解:由三视图可知几何体是一个圆柱的上下底分别挖去一个半球后的几何体,圆柱的母线长为4a,两个底面的半径为a,几何体的表面积为:S=2πa×4a+4πa2=12πa2,可得12πa2=48π,解得a=2,故选:B.判断几何体的形状,利用三视图的数据转化求解即可.本题考查三视图求解几何体的表面积,判断几何体的性质是解题的关键.8.【答案】C【解析】解:函数(x)=sin2x-2cos2x=sin2x-cos2x-1=2sin(2x-)-1,将f(x)的图象上的所有点的横坐标缩短为原来的,纵坐标不变,可得y=2sin(6x-)-1的图象,再把所得图象向上平移1个单位长度,得到函数g(x)=2sin(6x-)的图象,若g(x1)•g(x2)=-4,则g(x1)和g(x2)一个为2,一个为-2,则|x1-x2|的值为k•=(2k+1)•,k∈Z,令k=1,可得|x1-x2|的值为,故选:C.利用三角恒等变换化简f(x)的解析式,利用函数y=Asin(ωx+φ)的图象变换规律得到g(x)的解析式,正弦函数的最值及周期性求得|x1-x2|的值可能值.本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的最值及周期性,属于中档题.9.【答案】B【解析】解:由x2=4y,可得y′=x,所以抛物线在点P处切线斜率k=×2=1,从而过点P(2,1)的切线方程y-1=1×(x-2),即y=x-1,令x=0,解得y=-1,所以M(0,-1),又点M与点N关于直线y=x对称,所以N(-1,0),又由已知得F(0,1),又点P(2,1),所以|FP|=2,点N到FP的距离d=-1,所以S=|FP|•d=×2×1=1,故选:B.先求出抛物线的切线方程,即可求出点M的坐标,再根据对称求出N点的坐标,即可求出本题主要考查了抛物线的定义及性质的运用.考查了学生综合分析问题的能力,属中档题.10.【答案】B【解析】解:根据题意,f(x)=x3-x=0,解可得x=±1或0,即函数f(x)的零点为0,1,-1;即P={0,1,-1};若x i∈P(i∈N}),则满足条件“x12+x22+x32+x42≤4”,则x l,x2,x3,x4)的取法都有3种,数组(x l,x2,x3,x4)的个数为3×3×3×3=81种;故选:B.根据题意,令f(x)=0可得x的值,即可得函数f(x)的零点,对于数组(x l,x2,x3,x4),分析可得x l,x2,x3,x4)的取法都有3种,由分步计数原理分析可得答案.本题考查排列、组合的应用以及分步计数原理的应用,涉及函数的零点判定定理,属于基础题.11.【答案】C【解析】解:设正方形的面积是1,结合图象,阴影部分是和大三角形的面积相等,从而阴影部分占正方形的,故满足条件的概率p==,故选:C.求出阴影部分的面积,根据几何概型的定义求出满足条件的概率即可.本题考查了几何概型问题,考查数形结合思想,是一道基础题.12.【答案】D【解析】解:x l,x2,…,x n,为方程==…==m的n个解,即f(x)=mx的n个解,y=f(x)和y=mx的图象如右,可得f(x)和直线最多4个交点,将x=1代入-x2≤mx,可得m≥,以下求y=lnx与y=mx相切时的m值,设切点横坐标为a,则y=lnx在(a,lna)处的切线的斜率为,方程为y-lna=(x-a),由题意可得lna-1=0,m=,解得a=e,m=,结合图象可得m的范围是[,).故选:D.由题意可得f(x)和直线y=mx最多4个交点,将x=1代入可得m的值,考虑直线与y=lnx相切的m的值,即可得到所求范围.本题考查分段函数的图象和运用,考查直线的斜率和导数的几何意义,考查运算能力,属于中档题.13.【答案】0【解析】解:根据题意,△ABC中,-=,若||=|-|,则有|BC|=|AC|,△ABC为等腰三角形,若D是AB的中点,则CD⊥AB,即有•=0,又由D(3,1),C(2,m),则=(1,1-m),则•=1×1+(1-m)×(-1)=0,解可得:m=0;故答案为:0.根据题意,由||=|-|,分析可得|BC|=|AC|,△ABC为等腰三角形,又由D为AB的中点,则CD⊥AB,即有•=0,由数量积的坐标计算公式可得•=1×1+(1-m)×(-1)=0,解可得m的值,即可得答案.本题考查平面向量的数量积运算,关键是分析△ABC的边之间的关系.14.【答案】8【解析】解:不等式组对应的平面区域如图:由z=4x-3y+1得y=x-z+,A(4,3),平移直线y=x-z+,则由图象可知当直线y=x-z+,当经过点A时,直线的截距最小,此时z最大.此时最大值z=4×4-3×3+1=8,故答案为:8.作出不等式组对应的平面区域,利用z的几何意义,求出最大值.本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.15.【答案】0或2【解析】解:(x+a)9=[(x+1)+(a-1)]9=a0+a1(x+l)+a2(x+l)2+…+a9(x+l)9,∴a5=•(a-1)4=126,∴实数a=0,或a=2,故答案为:0或2.根据:(x+a)9=[(x+1)+(a-1)]9,按照二项式定理展开,可得a5的值,再根据a5=126,求得a的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.【答案】【解析】解:由题意知,△BCD中,由正弦定理得sin∠BDC=sin∠BCDcos∠DBC+sin∠DBC•sin∠BCD,又∠BDC=π-(∠DBC+∠BCD),所以sin(∠DBC+∠BCD)=sin∠BCDcos∠DBC+sin∠DBCsin∠BCD,展开整理得sin∠DBCcos∠BCD=sin∠DBCsin∠BCD,因为sin∠DBC≠0,所以tan∠BCD=,故∠BCD=;又四边形ABCD内接于圆,所以∠A=π-=;在△ABD中,由余弦定理得,BD2=AB2+AD2-2AB•ADcosA=1+4-2×1×2×cos=7,因此BD=;在△BCD中,由余弦定理得,BD2=BC2+CD2-2BC•CDcos=BC2+CD2-BC•CD,∴7=BC2+CD2-BC•CD≥2BC•CD-BC•CD=BC•CD,∴BC•CD≤7,当且仅当BC=CD=时“=”成立;所以S△BCD=BC•CD•sin∠BCD=BC•CD•sin=BC•CD≤,所以S△BCD的最大值为.故答案为:.由题意,利用正弦、余弦定理,结合图形求出△BCD的面积表达式,再求面积的最大值.本题考查了三角恒等变换以及三角形面积计算问题,是中档题.17.【答案】解:(1)由S1=2a1-1,得a1=1,∵S n-S n-1=(2a n-n)-[2a n-1-(n-1)](n≥2)∴a n=2a n-1+1,∴a n+1=2(a n-1+1),∴=2(n≥2),∴{a n+1}是首先为2,公比为2的等比数列,∴a n+1=2n,∴a n=2n-1;(2)∵a n=2n-1,∴a1+a3+a s+…+a2n+1=(2+23+…+22n+1)-(n+1)=-(n+1)=.【解析】(1)由已知等式构造出等比数列{a n+1},可求数列{a n}的通项公式;(2)由等比数列的前n项和可求结果.本题主要考查等比数列通项公式和前n项和公式,利用构造法是解决本题的关键.18.【答案】(本小题满分12分)解:(1)∵由已知得:a cos B+b cos A=2c cos A,∴由正弦定理得:sin A cos B+sin B cos A=2sin C cos A,即:sin(A+B)=2sin C cos A.∵A+B=π-C,∴sin(A+B)=sin C,∴sin C=2sin C cos A.由于sin C>0,∴cos A=.∵A∈(0,π),∴A=.………………………(6分)(2)∵设△ABC的外接圆半径为R,则R=1,a=2R sin A=,由余弦定理得:a2=b2+c2-2bc cos=b2+c2-bc=(b+c)2-3bc,即3=12-3bc,∴bc=3,…11分∴△ABC的面积S=bc sin A=.………………………(12分)【解析】(1)由等差数列的性质,正弦定理,两角和的正弦函数公式可得sinC=2sinCcosA,由sinC>0,可求cosA=,结合范围A∈(0,π),可求A的值.(2)由正弦定理可求a,由余弦定理可求bc=3,进而根据三角形面积公式即可求解.本题主要考查了等差数列的性质,正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.19.【答案】证明:(1)取B1C的中点F,连结DF,EF,∵C1D=DB1,B1F=CF,∴DF∥CC1,且DF=,又E为AA1的中点,∴A1E∥CC1,,∴DF∥A1E,DF=A1E,∴四边形A1DFE是平行四边形,∴A1D∥平面B1CE.解:(2)如图,分别以CB,CA,CC1所在直线为x,y,z轴,建立空间直角坐标系C-xyz,则C(0,0,0),O(1,1,0),E(0,2,3λ),∴=(1,1,0),=(0,2,3λ),设平面COE的法向量=(x,y,z),则,取x=1,得=(1,-1,),平面CBB1C1的法向量=(0,1,0),∵实数λ的值使平面COE与平面CBB1C1所成的锐二面角的余弦值为.∴|cos<,>|===,由λ∈[0,1],解得,∴实数λ=使平面COE与平面CBB1C1所成的锐二面角的余弦值为.【解析】(1)取B1C的中点F,连结DF,EF,推导出四边形A1DFE是平行四边形,由此以证明A1D∥平面B1CE.(2)分别以CB,CA,CC1所在直线为x,y,z轴,建立空间直角坐标系C-xyz,利用向量法能求出实数λ=使平面COE与平面CBB1C1所成的锐二面角的余弦值为.本题考查线面平行的证明,考查满足二面角的余弦值的实数值的确定与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)全县降雨量的平均值为:(50×6+60×9+70×5+1×2+2×4+4×3+5×2+6×2+7+8+4+9)=64.1≈64(mm).(2)(i)没有抽到一个高于平均降雨量的乡镇的概率为=,∴至少抽到一个高于平均降雨量的乡镇的概率p=1-=.(ii)20个乡镇中,有5个乡镇降雨量不低于70mm,设X=“需发出特急防洪通知的乡镇的个数”,则X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,E(X)=+=.【解析】(1)由茎叶图能求出全县降雨量的平均值.(2)(i)没有抽到一个高于平均降雨量的乡镇的概率为=,由此能求出至少抽到一个高于平均降雨量的乡镇的概率.(ii)20个乡镇中,有5个乡镇降雨量不低于70mm,设X=“需发出特急防洪通知的乡镇的个数”,则X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量的X的分布列和E(X).本题考查平均数、概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查茎叶图、对立事件概率计算公式、排列组合等基础知识,考查运算求解能力,是中档题.21.【答案】解:(1)由于椭圆C的离心率为,设,则a=3g,,则椭圆C的标准方程为,A(x1,y1)、将点P的坐标代入椭圆C的方程得,解得,∴,,因此,椭圆C的标准方程为;(2)设直线l的方程为x=my+2,设点A(x1,y1)、B(x2,y2),将直线l的方程与椭圆C的方程联立,消去x得,(m2+3)y2+4my-2=0,由韦达定理可得,,假设在x轴上存在定点D(t,0)使得为定值,而,,,同理可得,,==(my1+2-t)(my2+2-t)+y1y2===为定值,则,解得,且此时.因此,在x轴上存在定点,使得为定值.【解析】(1)根据椭圆C的离心率设,得出a=3g,,再将点P的坐标代入椭圆方程可求出g的值,从而得出a、b的值,于是可得出椭圆C的标准方程;(2)设直线l的方程为x=my+2,设点A(x1,y1)、B(x2,y2),并设点D的坐标为(t,0),将直线l的方程与椭圆C的方程联立,列出韦达定理,结合向量数量积的坐标运算计算为定值,通过化简计算得出t的值,从而说明定点D的存在性.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题.22.【答案】解:(1)f′(x)=-1=(x>0),当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)递减,当a>0时,令f′(x)>0,解得:0<x<a,令f′(x)<0,解得:x>a,故f(x)在(0,a)递增,在(a,+∞)递减;(2)当a=1时,由(1)知f(x)在(0,1)递增,在(1,+∞)递减,故f(x)max=f(1)=-1-b,∵函数f(x)恰有两个不同的零点x1,x2,且x→0时,f(x)→-∞,x→+∞,f(x)→-∞,故-1-b>0,即b<-1,故实数b的范围是(-∞,-1),不妨设x1<x2,则0<x1<1<x2,∵f′(x)=-1在(0,+∞)递减,且f′(1)=0,故要证f()<0,只需证>1,即证x1+x2>2,当x2≥2时,∵0<x1<1,∴x1+x2>2显然成立,当1<x2<2时,令F(x)=f(x)-f(2-x),x∈(1,2),∵f(x)=ln x-x-b,故F(x)=ln x-ln(2-x)-2x+2,F′(x)=>0,x1∈(0,1),2-x2∈(0,1),故x1>2-x2,即x1+x2>2,综上,f()<0.【解析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)代入a的值,根据函数的单调性求出f(x)的最大值,结合函数的零点的个数求出b的范围,要证f()<0,只需证x1+x2>2,当x2≥2时,x1+x2>2显然成立,当1<x2<2时,令F(x)=f(x)-f(2-x),x∈(1,2),根据函数的单调性证明即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。
2018-2019学年安徽省江南十校联考高考数学一模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
合题目要求的.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为()A.2 B.3 C.4 D.52.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.3.“a=0”是“函数f(x)=sinx﹣+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知l是双曲线C:﹣=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若•=0,则P到x轴的距离为()A.B.C.2 D.5.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.6.在数列{a n}中,a n+1﹣a n=2,S n为{a n}的前n项和.若S10=50,则数列{a n+a n+1}的前10项和为()A.100 B.110 C.120 D.1307.设D是△ABC所在平面内一点,=2,则()A.=﹣B.=﹣C.=﹣D.=﹣8.执行如图所示的程序框图,如果输入的t=50,则输出的n=()A.5 B.6 C.7 D.89.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且对∀x∈R,有f(x)≤f()成立,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)10.若x,y满足约束条件,则z=y﹣x的取值范围为()A.[﹣2,2] B.[﹣,2]C.[﹣1,2] D.[﹣,1]11.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4B.5π+16+4C.4π+16+2D.5π+16+212.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二.填空题:本大题共4小题,每小题5分.13.2018-2019学年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=.14.(2x﹣y)5的展开式中,x2y3的系数为.15.椭圆C: +=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P、Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为.16.已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2t2≤0成立,则实数t的取值范围为.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°,求(Ⅰ)∠ADB;(Ⅱ)△ADC的面积S.18.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,求二面角A﹣BF﹣D的余弦值.19.第31届夏季奥林匹克运动会将于2018-2019学年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国38 51 32 28 16俄罗斯24 23 27 32 26(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为,丙猜中国代表团的概率为,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.21.已知函数f(x)=e x+ax2﹣2ax﹣1.(Ⅰ)当a=时,讨论f(x)的单调性;(Ⅱ)设函数g(x)=f′(x),讨论g(x)的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有﹣∞和+∞的区间).四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.2018-2019学年安徽省江南十校联考高考数学一模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为()A.2 B.3 C.4 D.5【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,再由B,求出两集合的交集,即可做出判断.【解答】解:由A中不等式变形得:(2x+1)(x﹣3)≤0,解得:﹣≤x≤3,即A={x|﹣≤x≤3},∵B={x∈Z|x≤2}={2,1,0,﹣1,…},∴A∩B={0,1,2},即有3个元素,故选:B.2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.【考点】复数代数形式的混合运算.【分析】z(1﹣i)=|1﹣i|+i,化为z=,再利用复数的运算法则、实部的定义即可得出.【解答】解:∵z(1﹣i)=|1﹣i|+i,∴z===+i,∴z 的实部为.故选:A.3.“a=0”是“函数f(x)=sinx﹣+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据奇函数的定义判断出a=0时,为奇函数,再根据奇函数的定义判断当为奇函数时,a=0,故可以判断为充要条件.【解答】解:f(x)的定义域为{x|x≠0},关于原点对称当a=0时,f(x)=sinx﹣,f(﹣x)=sin(﹣x)﹣(﹣)=﹣sinx+=﹣(sinx﹣)=﹣f(x),故f(z)为奇函数,当函数f(x)=sinx﹣+a为奇函数时,f(﹣x)+f(x)=0又f(﹣x)+f(x)=sin(﹣x)﹣(﹣)+a+sinx﹣+a=2a,故a=0所以““a=0”是“函数f(x)=sinx﹣+a为奇函数”的充要条件,故选C4.已知l是双曲线C:﹣=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若•=0,则P到x轴的距离为()A.B.C.2 D.【考点】双曲线的简单性质.【分析】求得双曲线的a,b,c,可得焦点坐标和一条渐近线方程,设P(m,m),运用向量的数量积的坐标表示,解方程可得m,进而求得P到x轴的距离.【解答】解:双曲线C:﹣=1的a=,b=2,c==,即有F1(﹣,0),F2(,0),设渐近线l的方程为y=x,且P(m,m),•=(﹣﹣m,﹣m)•(﹣m,﹣m)=(﹣﹣m)(﹣m)+(﹣m)2=0,化为3m2﹣6=0,解得m=±,则P到x轴的距离为|m|=2.故选:C.5.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y ≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为()A.B.C.D.【考点】类比推理.【分析】类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为球的体积的,即可得出结论.【解答】解:类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为球的体积的,即=,故选:B.6.在数列{a n}中,a n+1﹣a n=2,S n为{a n}的前n项和.若S10=50,则数列{a n+a n+1}的前10项和为()A.100 B.110 C.120 D.130【考点】数列的求和.【分析】由数列{a n}中,a n+1﹣a n=2,可得此数列是等差数列,公差为2.数列{a n+a n+1}的前10项和=a1+a2+a2+a3+…+a10+a10+a11=2S10+10d,即可得出.【解答】解:∵数列{a n}中,a n+1﹣a n=2,∴此数列是等差数列,公差为2.数列{a n+a n+1}的前10项和为:a1+a2+a2+a3+…+a10+a10+a11=2(a1+a2+…+a10)+a11﹣a1=2S10+10×2=120,故选:C.7.设D是△ABC所在平面内一点,=2,则()A.=﹣B.=﹣C.=﹣D.=﹣【考点】向量加减混合运算及其几何意义.【分析】根据平面向量线性运算的几何意义用表示出.【解答】解:,,∴==.故选:D.8.执行如图所示的程序框图,如果输入的t=50,则输出的n=()A.5 B.6 C.7 D.8【考点】循环结构.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次运行后s=2,a=3,n=1;第二次运行后s=5,a=5,n=2;第三次运行后s=10,a=9,n=3;第四次运行后s=19,a=17,n=4;第五次运行后s=36,a=33,n=5;第六次运行后s=69,a=65,n=6;此时不满足s<t,输出n=6,故选:B.9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为4π,且对∀x∈R,有f(x)≤f()成立,则f(x)的一个对称中心坐标是()A.(﹣,0) B.(﹣,0)C.(,0)D.(,0)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由题意,利用周期公式可求.由f(x)≤f()恒成立,结合范围|φ|<,可求φ=,令=kπ(k∈Z),即可解得f(x)的对称中心,即可得解.【解答】解:由f(x)=sin(ωx+φ)的最小正周期为4π,得.因为f(x)≤f()恒成立,所以f(x),即+φ=+2kπ(k∈Z),由|φ|<,得φ=,故f(x)=sin().令=kπ(k∈Z),得x=2kπ﹣,(k∈Z),故f(x)的对称中心为(2kπ﹣,0)(k∈Z),当k=0时,f(x)的对称中心为(﹣,0),故选:A.10.若x,y满足约束条件,则z=y﹣x的取值范围为()A.[﹣2,2] B.[﹣,2]C.[﹣1,2] D.[﹣,1]【考点】简单线性规划.【分析】由题意作平面区域,化简z=y﹣x为y=x+z,从而结合图象求解.【解答】解:由题意作平面区域如下,化简z=y﹣x为y=x+z,设l:y=x+z,故结合图象可知,当l过3x﹣y=0与x+y﹣4=0的交点(1,3)时,z取得最大值2;当l与抛物线y=x2相切时,z取得最小值,由,消去y得:x2﹣2x﹣2z=0,由△=4+8z=0,得z=﹣,故﹣≤z≤2,故选B.11.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4B.5π+16+4C.4π+16+2D.5π+16+2【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个正三棱柱和一个半圆柱的组合体,由三视图求出几何元素的长度,由条件和面积公式求出各个面的面积,加起来求出几何体的表面积.【解答】解:由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为=2;半圆柱的侧面积为π×1×4=4π,两个底面面积之和为,所以几何体的表面积为,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,则f(x)极小值设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二.填空题:本大题共4小题,每小题5分.13.2018-2019学年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=200.【考点】分层抽样方法.【分析】根据分层抽样的定义即可得到结论.【解答】解:由题意可得=,故N=200.故答案为:200.14.(2x﹣y)5的展开式中,x2y3的系数为﹣40.【考点】二项式定理.【分析】T r+1=(2x)5﹣r(﹣y)r,令r=3,即可得出.【解答】解:T r+1=(2x)5﹣r(﹣y)r,令r=3,可得:x2y3的系数为×22×(﹣1)3=﹣40.故答案为:﹣40.15.椭圆C: +=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P、Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】设点P在第一象限,由对称性可得|OP|==,推导出∠POA=60°,P(),由此能求出椭圆的离心率.【解答】解:不妨设点P在第一象限,由对称性可得|OP|==,∵AP⊥PQ,在Rt△POA中,cos∠POA==,∴∠POA=60°,∴P(),代入椭圆方程得:=1,∴a2=5b2=5(a2﹣c2),整理得2a=c,∴离心率e==.故答案为:.16.已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2t2≤0成立,则实数t的取值范围为﹣2<t≤﹣1或≤t<1.【考点】数列与不等式的综合.【分析】由题意求得数列{a n}的通项公式,将原不等式转化成n2﹣tn﹣2t2≤0,构造辅助函数f(x)=n2﹣tn﹣2t2,由题意可知f(1)≤0,f(2)>0,即可求得t的取值范围.=﹣,【解答】解:当n≥2时,a n=S n﹣S n﹣1整理得=,又a1=1,故a n=n,不等式a n2﹣ta n﹣2t2≤0可化为:n2﹣tn﹣2t2≤0,设f(n)=n2﹣tn﹣2t2,由于f(0)=﹣2t2,由题意可得:,解得﹣2<t≤﹣1或≤t<1.故答案为:﹣2<t≤﹣1或≤t<1.三.解答题:解答应写出文字说明,证明过程和演算步骤.17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°,求(Ⅰ)∠ADB;(Ⅱ)△ADC的面积S.【考点】解三角形的实际应用.【分析】(I)在△BCD中由正弦定理解出BD,在△ABD中,由余弦定解出cos∠ADB;(II)代入三角形的面积公式计算.【解答】解:(Ⅰ)在△BCD中,由正弦定理得:,即,解得BD=3.在△ABD中,由余弦定理得:cos∠ADB===.∴∠ADB=45°.(Ⅱ)∵∠CBD=30°,∠BCD=120°,∴∠CDB=30°.∴sin∠ADC=sin(45°+30°)=,∴S△ACD=•CDsin∠ADC==.18.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=BD,平面EFBD⊥平面ABCD.(Ⅰ)证明:DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,求二面角A﹣BF﹣D的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;用空间向量求平面间的夹角.【分析】(Ⅰ)根据线面平行的判定定理即可证明DE∥平面ACF;(Ⅱ)若梯形EFBD的面积为3,根据二面角平面角的定义作出二面角的平面角,结合三角形的边角关系即可求二面角A﹣BF﹣D的余弦值.【解答】解:(Ⅰ)设AC,BD的交点为O,则O为BD的中点,连接OF,由EF∥BD,EF=BD,得EF∥OD.EF=OD,所以四边形EFOD为平行四边形,故ED∥OF,…又EF⊄平面ACF,OF⊂平面ACF,所以DE∥平面ACF.…(Ⅱ)方法一:因为平面EFBD⊥平面ABCD,交线为BD,AO⊥BD,所以AO⊥平面EFBD,作OM⊥BF于M,连AM,∵AO⊥平面BDEF,∴AO⊥BF,又OM∩AO=O,∴BF⊥平面AOM,∴BF⊥AM,故∠AMO为二面角A﹣BF﹣D的平面角.…取EF中点P,连接OP,因为四边形EFBD为等腰梯形,故OP⊥BD,因为=•OP=3,所以OP=.由PF=,得BF=OF==,因为,所以OM==,故AM==,…所以cos=,故二面角A﹣BF﹣D的余弦值为.…19.第31届夏季奥林匹克运动会将于2018-2019学年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国38 51 32 28 16俄罗斯24 23 27 32 26(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为,丙猜中国代表团的概率为,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.【考点】离散型随机变量的期望与方差.【分析】(Ⅰ)作出两国代表团获得的金牌数的茎叶图,通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.(Ⅱ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)两国代表团获得的金牌数的茎叶图如下通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.…(Ⅱ)由已知得X的可能取值为0,1,2,3,设事件A、B、C分别表示甲、乙、丙猜中国代表团,则P(X=0)=P()P()P()=(1﹣)2(1﹣)=,P(X=1)==+(1﹣)2×=,P(X=2)==()2(1﹣)+C()(1﹣)()=,P(X=3)=P(A)P(B)P(C)=()2()=,故X的分布列为:X 0 1 2 3P…EX==.…20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段ON的长;(Ⅱ)联立直线和抛物线方程进行削元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=2px经过点M(2,2),得22=4p,故p=1,c的方程为y2=2x …C在第一象限的图象对应的函数解析式为y=,则′=,故C在点M处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点N的坐标为(﹣2,0),故线段ON的长为2 …(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …直线MA的斜率为==,同理直线MB的斜率为,直线ME的斜率为因为直线MA、ME、MB的斜率依次成等差数列,所以+=2×=1+,即=1+=1+,…整理得:,因为l2不经过点N,所以b≠﹣2所以2m﹣b+2=2m,即b=2故l2的方程为x=my+2,即l2恒过定点(2,0)…21.已知函数f(x)=e x+ax2﹣2ax﹣1.(Ⅰ)当a=时,讨论f(x)的单调性;(Ⅱ)设函数g(x)=f′(x),讨论g(x)的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有﹣∞和+∞的区间).【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(Ⅰ)求得当a=时的f(x)的导数,由导数的单调性,讨论x>0,x<0,即可得到所求单调性;(Ⅱ)由条件可得g(x)=2ax﹣2a,g′(x)=e x+2a,对a讨论:a=0,a>0,分①1﹣2a<0,即a>时,②1﹣2a=0,即a=时,③1﹣2a>0,即0<a<时,a<0,分①ln(﹣2a)﹣2<0,即﹣<a<0时,②ln(﹣2a)﹣2=0,即a=﹣时,③ln(﹣2a)﹣2>0,即a<﹣时,运用导数判断单调性以及函数零点存在定理,即可判断零点的个数.【解答】解:(Ⅰ)当a=时,f′(x)=e x+x﹣1,易知f′(x)在R上单调递增,且f′(0)=0,因此,当x<0时,f′(x)<0;当x>0时,f′(x)>0.故f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)由条件可得g(x)=2ax﹣2a,g′(x)=e x+2a,(i)当a=0时,g(x)=e x>0,g(x)无零点;(ii)当a>0时,g′(x)>0,g(x)在R上单调递增,g(0)=1﹣2a,g(1)=e>0,①若1﹣2a<0,即a>时,g(0)=1﹣2a<0,g(x)在(0,1)上有一个零点;②若1﹣2a=0,即a=时,g(0)=0,g(x)有一个零点0;③若1﹣2a>0,即0<a<时,g()=e﹣1<0,g(x)在(,0)上有一个零点;(iii)当a<0时,令g′(x)>0,得x>ln(﹣2a);令g′(x)<0,得x<ln(﹣2a).所以g(x)在(﹣∞,ln(﹣2a))单调递减,在(ln(﹣2a),+∞)单调递增,g(x)min=g(ln(﹣2a))=2a[ln(﹣2a)﹣2];①若ln(﹣2a)﹣2<0,即﹣<a<0时,g(x)>0,g(x)无零点;②若ln(﹣2a)﹣2=0,即a=﹣时,g(2)=0,g(x)有一个零点2;③若ln(﹣2a)﹣2>0,即a<﹣时,g(1)=e>0,g(ln(﹣2a))<0,g(x)在(1,ln(﹣2a))有一个零点;设h(x)=e x﹣x2(x≥1),则h′(x)=e x﹣2x,设u(x)=e x﹣2x,则u′(x)=e x﹣2,当x≥1时,u′(x)≥e﹣2>0,所以u(x)=h′(x)在[1,+∞)单调递增,h′(x)≥h′(1)=e﹣2>0,所以h(x)在[1,+∞)单调递增,h(x)≥h(1)=e﹣1,即x>1时,e x>x2,故g(x)>x2+2ax﹣2a,设k(x)=lnx﹣x(x≥1),则k′(x)=﹣1=≤0,所以k(x)在[1,+∞)单调递减,k(x)≤k(1)=﹣1<0,即x>1时,lnx<x,因为a<﹣时,﹣2a>e2>1,所以ln(﹣2a)<﹣2a,又g(﹣2a)>(﹣2a)2+2a(﹣2a)﹣2a=﹣2a>0,g(x)在(ln(﹣2a),﹣2a)上有一个零点,故g(x)有两个零点.综上,当a<﹣时,g(x)在(1,ln(﹣2a))和(ln(﹣2a),﹣2a)上各有一个零点,共有两个零点;当a=﹣时,g(x)有一个零点2;当﹣<a≤0时,g(x)无零点;当0<a<时,g(x)在(,0)上有一个零点;当a=时,g(x)有一个零点0;当a>时,g(x)在(0,1)上有一个零点.四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.(Ⅰ)证明:BE=DE;(Ⅱ)若AD=3AC,求AE:AC的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)作出辅助线,根据AB⊥OE,AB⊥CD,可得OE∥CD,又O为BC的中点,得E为BD的中点,即可证得结论;(Ⅱ)设AC=t(t>0),由射影定理,根据三角形中的知识,即可求得比值.【解答】证明:(Ⅰ)连接AB、OE,∵EA、EB为圆O的切线,∴OE垂直平分AB,又∵BC为圆O的直径,∴AB⊥CD,∴OE∥CD,又O为BC的中点,故E为BD的中点,∴BE=ED …解:(Ⅱ)设AC=t(t>0),则AD=3t,CD=4t,在Rt△BCD中,由射影定理可得:BD2=DA•DC=12t2,∴BD=2t,在Rt△ABD中,AE=BD=t.∴AE:AC=.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3,),B(3,),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.【考点】简单曲线的极坐标方程.【分析】(1)由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得圆的直角坐标方程;(2)求得A,B的直角坐标,即可得到直线AB的方程;求得AB的距离和圆C和半径,求得圆C到直线AB的距离,由圆C上的点到直线AB的最大距离为d+r,运用三角形的面积公式,即可得到所求最大值.【解答】解:(1)由ρ=2cosθ,可得:ρ2=2ρcosθ,所以x2+y2=2x故在平面直角坐标系中圆的标准方程为:(x﹣1)2+y2=1 …(2)在直角坐标系中A(0,3),B(,)所以|AB|==3,直线AB的方程为:x+y=3所以圆心到直线AB的距离d==,又圆C的半径为1,所以圆C上的点到直线AB的最大距离为+1故△ABP面积的最大值为S==…[选修4-5:不等式选讲]24.已知函数f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(Ⅰ)求M;(Ⅱ)已知a∈M,比较a2﹣a+1与的大小.【考点】不等关系与不等式.【分析】(I)f(x)=|x|﹣|2x﹣1|=,由f(x,由f(x)>﹣1,可得:或或,解出即可得出.(Ⅱ)由(Ⅰ)知:0<a<2,可得:a2﹣a+1﹣==g(a).对a分类讨论:当0<a<1时,当a=1时,当1<a<2时,即可得出.【解答】解:(I)f(x)=|x|﹣|2x﹣1|=,由f(x)>﹣1,可得:或或,解得0<x<2,∴M=(0,2).(Ⅱ)由(Ⅰ)知:0<a<2,∵a2﹣a+1﹣==g(a).当0<a<1时,g(a)<0,∴a2﹣a+1<;当a=1时,g(a)=0,∴a2﹣a+1=;当1<a<2时,g(a)>0,∴a2﹣a+1>;综上所述:当0<a<1时,∴a2﹣a+1<;当a=1时,a2﹣a+1=;当1<a<2时,a2﹣a+1>.2018-2019学年8月23日。