量子力学 第四版 卷一 (曾谨言 著) 答案----第12章
- 格式:pdf
- 大小:156.83 KB
- 文档页数:4
补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。
求至少存在一条束缚能级的体积。
解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2E E V kμμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则 当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022 μ(7’) 若令 ηξ==a a k k ,'(8) 则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg μηξξξη(10)式是以a V r 202 μ=为半径的圆。
对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。
(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。
当2π≥r ,即222πμ≥a V ,亦即 82220 πμ≥a V (11)时,至少存在一个束缚态能级。
这是对粒子质量,位阱深度和宽度的一个限制。
曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。
这里涉及到科学上的继承和创新的关系。
“继往”中是一种手段,而目的只能是“开来”。
讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。
要真正贯彻启发式教学,教师有必要进行教学与科学研究。
而教学研究既有教学法的研究,便更实质性的是教学内容的研究。
从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。
在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。
量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。
补充3.5)设粒子处于半壁高的势场中⎪⎩⎪⎨⎧><<-<∞=ax a x V x V ,00,x ,)(0 (1) 求粒子的能量本征值。
求至少存在一条束缚能级的体积。
解:分区域写出eq s .:ax ,0)()(a x 0 ,0)()(22"212'"1>=-<<=+x k x x k x ψψψψ (2)其中 ()22022'2k ,2E E V kμμ-=+=(3) 方程的解为kxkxx ik x ik DeCe x Be Ae x --+=+=)()(21''ψψ (4)根据对波函数的有限性要求,当∞→x 时,)(2x ψ有限,则 当0=x 时,0)(1=x ψ,则0=+B A 于是ax , )(x 0 ,sin )(2'1>=<<=-kxDe x a x k F x ψψ (5)在a x =处,波函数及其一级导数连续,得ka ka kDe a k F k De a k F ---=='''cos ,sin (6)上两方程相比,得 kk a k tg ''-= (7)即 ()E E V E V atg +--=⎥⎦⎤⎢⎣⎡+0022 μ(7’) 若令 ηξ==a a k k ,'(8) 则由(7)和(3),我们将得到两个方程:⎪⎩⎪⎨⎧=+-=(10)9) ( 2220a V ctg μηξξξη(10)式是以a V r 202 μ=为半径的圆。
对于束缚态来说,00<<-E V ,结合(3)、(8)式可知,ξ和η都大于零。
(10)式表达的圆与曲线ξξηctg -=在第一象限的交点可决定束缚态能级。
当2π≥r ,即222πμ≥a V ,亦即 82220 πμ≥a V (11)时,至少存在一个束缚态能级。
这是对粒子质量,位阱深度和宽度的一个限制。
量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。
曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。
以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。
一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。
2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。
对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。
3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。
4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。
5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。
这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。
6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。
第二章:函数与波动方程P69 当势能)(r V 改变一常量C 时,即c r V r V +→)()(,粒子的波函数与时间无关部分变否?能量本征值变否?(解)设原来的薛定谔方程式是0)]([2222=-+ψψx V E mdx d将方程式左边加减相等的量ψC 得:0]})([]{[2222=+-++ψψC x V C E mdx d这两个方程式从数学形式上来说完全相同,因此它们有相同的解)(x ψ, 从能量本征值来说,后者比前者增加了C 。
(证)E =υT = = =用高斯定理 中间一式的第一项是零,因为ψ假定满足平方可积条件,因而0>T 因此 V V T E >+=,能让能量平均值V V min >因此V E min >令ψψn=(本征态)则EnE =而VE nmin>得证2.1设一维自由粒子的初态()/00,x ip ex =ψ, 求()t x ,ψ。
解: () /2200,⎪⎪⎭⎫ ⎝⎛-=t m p x p i et x ψ2.2对于一维自由运动粒子,设)()0,(x x δψ=求2),(t x ψ。
(解)题给条件太简单,可以假设一些合理的条件,既然是自由运动,可设粒子动量是p ,能量是E ,为了能代表一种最普遍的一维自由运动,可以认为粒子的波函数是个波包(许多平面波的叠加),其波函数: p d ep t x i E px ip )()(21),(-∞-∞=⎰=φπψ (1)这是一维波包的通用表示法,是一种福里哀变换,上式若令0=t 应有 ex px i∞)0,(ψx δ)(将(2)(3(ψ,代入(4)(ψ p d eet x p i mx p m it timx ⎰∞-∞=--=)2(22221),(πψ利用积分απξαξ=⎰∞∞--d e 2: ti m et x ti m x ππψ221),(22=写出共轭函数(前一式i 变号):ti m et x timx -=-ππψ221),(22 t mt m t x πππψ22)2(1),(22=⨯=本题也可以用Fresnel 积分表示,为此可将(6)式积分改为:dp tmx p m t i dp t mx p m t 22)](2[sin )](2[cos ---⎰⎰∞∞-∞∞-用课本公式得timxetm i t x t x 2*2)1(21),(),(ππψψ=,两者相乘,可得相同的结果。