第一章 量子力学基础习题课
- 格式:pdf
- 大小:107.70 KB
- 文档页数:20
第一章 量子力学基础习题课姓名__________________;班级__________________;学号__________________。
一、是非题:1、微观粒子具有波粒二象性是指光的波性和电子的粒性。
2、波函数平方有物理意义, 但波函数本身是没有物理意义的。
3、对函数 Ψ=cos χ,p x 有确定值, p 2x 没有确定值,只有平均值。
4、在 内找到电子的几率为 。
5、在一维势阱中,当粒子的质量m 和势阱宽度l 愈小时,则能级间隔愈大,量子效应显著。
6、定态就是微观粒子处于静止状态,因此,定态的完全态函数与时间无关。
7、当电子处于 的本征态时,多次测量其能量,结果完全一致。
二、填空题1、首先提出能量量子化假定的科学家是 。
2、在电子衍射实验中, 对一个电子来说,代表 。
3、合格的波函数所应具有的条件为 、 、 。
4、光波粒二象性的关系式为_____________________。
5、一粒子在无限深势阱中运动,当处于基态时,在 处,几率密度最大。
6、实物微粒波动性假设是由 提出的,实物粒子的波 是 波。
7、一组正交、归一的波函数 ,…。
正交性的数学 表达式为 ,归一性的表达式为 。
8、微观体系的零点能是指____________________的能量。
9、若将一维势阱模型处理π电子时,E (乙烯) E (丁二烯)。
10、在量子力学中如对某一微观体系测量其某力学量能得到一确定值,则这个值就是该力学量所对应算符的 ,这个状态就是该力学量的 。
11、在量子力学中,计算力学量的主要途径是求这力学量的平均值,当体系处于它的本征态时这个平均值就是 值。
12、电子在一维势阱中运动n=3,节点数为 。
13、普朗克常数是自然界的一个基本常数,它的数值: 。
14、画出电子在一维势阱中运动的能级图 。
d τ*ψψH ˆ123,,ψψψ2ψ三、计算题1、计算波长λ=600nm 的可见光的光子的能量和质量。
第一章 量子力学基础一.选择题1. 已知某色光照射到一金属表面、产生了光电效应,若此金属的逸出电势是0U (使电子从金属逸出需做功0eU )则此单色光的波长λ必须满足: A(A )0/eU hc ≤λ (B )()o hc eU λ≥(C )()()0/eU hc λ≤ (D )()()0/eU hc λ≥2. 用强度为I ,波长为λ的X 射线(伦琴射线)分别照射锂(Z=3)和铁(Z=26),若在同一散射角下测得康普顿散射的X 射线波长分别Li λ和()11,Fe L F λλλλ>,它们对应的强度分别为1L I 和Fe I ,则(A )11,L Fe L Fe I I λλ>< (B )11,L Fe L Fe I I λλ== (C )11,l Fe L Fe I I λλ=>(D )11,L Fe L Fe I I λλ<> [ C ]3. 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比21:v v 是: (A )1; (B )19; (C )3;(D )9 。
[ C ]4. 若外来单色光将氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱的条数是: C (A )1; (B )2; (C )3; (D ) 65. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.40A ,则U 约为(A )150V (B )330V (C )630V (D )940V(普朗克常量34606310.h j s -=⨯) [ D ] 6. 若α粒子(电量为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A )()2h eRB (B )()h eRB(C )()12eRBh (D ))1eRBh [ A ] 7. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()32x x a πφ=(-a ≤x ≤a )那么粒子在x=5a/6处出现的几率密度为: (A )1/(2a ) (B )1/a(C) (D) [ ]解答:()2222531516cos cos 242ax a a aπρϕπ====, 故选(A )。
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE md dλpλθλλθθ−−−−=×××××××=×==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT =−+⇒−=−=−=⋅=−=−⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)223234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVp p −−−=××××××××=解:由5. 计算Na 在0K 时自由电子的平均动能。
1量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kThce kThc λλ ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
2解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有p h =λ nmm m E c hc Eh e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第一章量子力学基础主要概念
一、微观粒子的特性
1、波粒二象性
2、几率波
二、量子力学基本假定
1、态函数
2、力学量与算符
3、薛定谔方程
4、态叠加原理
三、一维无限深势阱
1、能量量子化
2、零点能
3、态函数存在节点且正交归一
一、是非题:
1、微观粒子具有波粒二象性是指光的波性和电子的粒性。
2、波函数平方有物理意义,但波函数本身是没有物理意义的。
3、对函数Ψ=cos χ,p x 有确定值,p 2x 没有确定值,只有平均值。
4、在内找到电子的几率为。
5、在一维势阱中,当粒子的质量m 和势阱宽度l 愈小时,则能级间隔愈大,量子效应显著。
6、定态就是微观粒子处于静止状态,因此,定态的完全态函数与时间无关。
7、当电子处于的本证态时,多次测量其能量,结果完全一致。
d τ*
ψψˆH
12、电子在一维势阱中运动n=3,节点数为。
13、普朗克常数是自然界的一个基本常数,它的数
值:。
14、画出电子在一维势阱中运动的能级图。
一、是非题:
1、微观粒子具有波粒二象性是指光的波性和电子的粒性。
2、波函数平方有物理意义,但波函数本身是没有物理意义的。
3、对函数Ψ=cos χ,p x 有确定值,p 2x 没有确定值,只有平均值。
4、在内找到电子的几率为。
5、在一维势阱中,当粒子的质量m 和势阱宽度l 愈小时,则能级间隔愈大,量子效应显著。
6、定态就是微观粒子处于静止状态,因此,定态的完全态函数与时间无关。
7、当电子处于的本证态时,多次测量其能量,结果完全一
致。
××××d τ*
ψψ
√√×H
ˆ
12、电子在一维势阱中运动n=3,节点数为。
13、普朗克常数是自然界的一个基本常数,它的数值:。
14、画出电子在一维势阱中运动的能级图。
2 6.626×10-34。