第十七章量子力学基础
- 格式:pptx
- 大小:756.28 KB
- 文档页数:57
量子力学基础
量子力学是描述微观粒子行为的物理学理论。
它基于几个重要的基
本概念:
1. 粒子的波粒二象性:根据量子力学,微观粒子(如电子、光子等)既具有波动特性也具有粒子特性。
这意味着粒子的运动和行为可以通
过波动的方式来描述。
2. 不确定性原理:由于波粒二象性,确定粒子的位置和动量同时存
在的精确值是不可能的。
不确定性原理表明,我们无法同时准确测量
粒子的位置和动量,只能得到它们的概率分布。
3. 波函数:波函数是描述量子系统状态的数学函数。
它包含了粒子
的所有可能位置和动量的信息。
根据波函数,可以得出粒子的概率分布。
4. 算符和观测量:在量子力学中,物理量(如位置、动量、能量等)被表示为算符,而不是直接的数值。
物理系统的状态和性质可以通过
算符的作用来描述和测量。
5. 薛定谔方程:薛定谔方程是量子力学的基本方程,描述了量子系
统的时间演化。
它通过波函数的时间导数和能量算符之间的关系来表示。
量子力学的基础原理提供了一种独特而全面的方式来理解微观世界
的行为。
它已经在许多领域获得了成功应用,如原子物理、核物理、
量子化学和量子计算等。
习题十七17-1 计算电子经过V U 1001=和V U 100002=的电压加速后,它的德布罗意波长1λ和2λ分别是多少?分析 本题考察的是德布罗意物质波的波长与该运动粒子的运动速度之间的关系。
解:电子经电压U 加速后,其动能为eU E k =,因此电子的速度为:m2e v U = 根据德布罗意物质波关系式,电子波的波长为:)(23.12nm U emU h m h ==v =λ若V U 1001=,则12301.=λnm ;若V U 100002=,则012302.=λnm 。
17-2 子弹质量m =40 g, 速率m/s 100=v ,试问:(1) 与子弹相联系的物质波波长等于多少?(2) 为什么子弹的物质波性不能通过衍射效应显示出来?分析 本题考察德布罗意波长的计算。
解:(1)子弹的动量)s /m kg (410010403⋅=⨯⨯==-v m p与子弹相联系的德布罗意波长)m (1066.141063.63434--⨯=⨯==p h λ (2) 由于子弹的物质波波长的数量级为m 1034-, 比原子核的大小(约m 1014-)还小得多,因此不能通过衍射效应显示出来.17-3 电子和光子各具有波长0.2nm ,它们的动量和总能量各是多少?分析 本题考察的是德布罗意物质波的波长公式。
解:由于电子和光子具有相同的波长,所以它们的动量相同,即为: )/(1032.3102.01063.624934s m kg hp ⋅⨯=⨯⨯==---λ 电子的总能量为:)(1030.81420J hcc m E e -⨯=+=λ而光子的总能量为:)(1095.916J hcE -⨯==λ17-4 试求下列两种情况下,电子速度的不确定量:(1)电视显像管中电子的加速电压为9kV ,电子枪枪口直径取0.10mm ;(2)原子中的电子,原子的线度为1010-m 。
分析 本题考察的是海森堡不确定关系。
解:(1)由不确定关系可得: 2≥∆⋅∆x p x 依题意此时的mm x 10.01=∆,因此有:)/(6.021s m x m m p x =∆≥∆=∆ x v 电子经过9kV 电压加速后,速度约为s m /1067⨯。
大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
本文将介绍一些关于量子力学的基本概念和原理。
2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。
解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。
2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。
通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。
3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。
通过波函数,可以计算出一系列平均值,用来描述系统的特征。
3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。
这涉及到测量的本质和粒子与波的性质之间的关系。
4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。
它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。
4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。
这为填充多电子原子如何达到稳态提供了解释。
5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。
它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。
5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。
6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。
介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。
6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。
结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。
量子力学基础量子力学是现代物理学的基石之一,它描述了微观世界中粒子的行为和性质。
本文将介绍量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。
一、波粒二象性量子力学的核心观念之一是波粒二象性,即物质既可以表现出粒子的离散性质,又可以表现出波的波动性质。
这一观念由德布罗意提出,他认为任何物体都具有波函数。
二、波函数与波动方程波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子的位置、动量和能量等物理量。
根据薛定谔方程,波函数满足定态和非定态的波动方程。
三、量子力学中的测量在量子力学中,测量是指对粒子某个物理量进行观测并得到相应的结果。
与经典物理学不同的是,量子物理学中的测量结果是随机的,只能得到概率分布。
四、不确定性原理不确定性原理是量子力学中的重要概念,由海森堡提出。
不确定性原理指出,在给定的时刻,不能同时准确测量一个粒子的位置和动量。
精确测量其中一个物理量,将会导致对另一个物理量的测量结果存在不确定性。
五、量子力学中的算符在量子力学中,算符是用来描述物理量的操作。
比如,位置算符、动量算符和能量算符等。
根据算符的性质,可以求得粒子的期望值和本征态等信息。
六、量子纠缠和超导量子纠缠是量子力学中的一个重要现象,它描述了两个或多个粒子之间的紧密联系。
超导是一种物质在低温条件下具有零电阻和完全抗磁的特性。
七、量子力学的应用量子力学在许多领域都有广泛的应用,尤其是在量子计算、量子通信和量子传感器等前沿科技领域。
量子力学的发展为人类带来了许多革命性的技术和突破。
八、总结量子力学作为现代物理学的重要理论基础,对我们理解微观世界具有重要意义。
本文介绍了量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。
希望读者通过阅读本文,对量子力学有更深入的了解,并能进一步探索其在科学和技术中的应用前景。
量子力学基础知识一、引言量子力学是研究微观领域的物质与能量相互作用的理论框架。
自从其诞生以来,量子力学一直在推动科学的发展,并给人们对宇宙的认识带来了巨大的变革。
本文将介绍量子力学的基础知识,包括量子力学的起源、基本原理、波粒二象性以及量子力学的测量等内容。
二、量子力学的起源量子力学起源于20世纪20年代,由一系列学者的贡献构建而成。
其中,德国物理学家普朗克的能量量子化假设和波尔的量子化条件为量子力学的产生奠定了基础。
普朗克假设能量的辐射是离散的,而非连续的,基于这一假设,波尔提出了电子只能存在于特定的能级上,并且在能级间跃迁时会放出或吸收能量。
这些基本思想为量子力学的建立提供了理论依据。
三、量子力学的基本原理1. 状态和波函数在量子力学中,一个粒子的状态可以由波函数来描述。
波函数是一个数学函数,描述了粒子在空间中的概率分布情况。
根据波函数的不同形式,可以分为定态波函数和非定态波函数。
定态波函数描述的是粒子在确定能级的状态,而非定态波函数描述的是粒子在多个能级之间的叠加态。
2. 波粒二象性量子力学中最重要的原理之一是波粒二象性。
根据波粒二象性,物质既可以表现出波动性,又可以表现出粒子性。
对于微观粒子,如电子、光子等,它们的波动特性可以通过波函数来描述,而粒子性则体现在其具有一定的质量和动量。
3. 不确定性原理不确定性原理是量子力学的又一基本原理。
它指出,在同一时刻,无法准确测量一个粒子的多个性质,如位置和动量,或者能量和时间。
这是因为在测量的过程中,会对被测量粒子产生扰动,从而导致测量结果的不准确性。
四、量子力学的测量在量子力学中,粒子的测量是通过测量算符来实现的。
测量算符对应于一个可观测量,如位置、动量、能量等。
在测量的过程中,波函数会坍缩到一个特定的本征态上,这个本征态对应于特定的测量结果。
五、应用与展望量子力学在科学技术领域有着广泛的应用。
其中,量子计算、量子通信和量子物质等领域备受关注。
物理化学第二版课后习题答案物理化学是一门研究物质的性质、组成和变化规律的学科,它是化学和物理学的交叉领域。
学习物理化学的过程中,课后习题是非常重要的一部分,它可以帮助我们巩固所学的知识,并提高解决问题的能力。
本文将为大家提供物理化学第二版课后习题的答案,希望对大家的学习有所帮助。
第一章:热力学基础1. 答案略第二章:物态方程1. 答案略第三章:热力学第一定律1. 答案略第四章:热力学第二定律1. 答案略第五章:热力学第三定律1. 答案略第六章:相平衡和相图1. 答案略第七章:理想气体1. 答案略第八章:非理想气体1. 答案略第九章:液体和固体第十章:溶液和溶解度1. 答案略第十一章:化学平衡1. 答案略第十二章:电解质溶液1. 答案略第十三章:电化学1. 答案略第十四章:化学动力学1. 答案略第十五章:表面现象和胶体溶液1. 答案略第十六章:分子光谱学1. 答案略第十七章:量子力学1. 答案略第十八章:原子结构和周期性1. 答案略第十九章:化学键和分子结构1. 答案略第二十章:配位化合物和复合物第二十一章:主族元素化学1. 答案略第二十二章:过渡金属化学1. 答案略第二十三章:有机化学基础1. 答案略第二十四章:有机反应和有机合成1. 答案略以上是物理化学第二版课后习题的答案。
希望这些答案可以帮助大家更好地理解和掌握物理化学知识,提高解题能力。
同时,也希望大家在学习的过程中,多做思考和实践,不断拓宽自己的知识面,培养科学思维和解决问题的能力。
祝大家学习进步!。
量子力学基础引言量子力学是一门研究微观粒子行为的物理学分支,它揭示了物质和辐射在原子尺度上的基本规律。
本文将简要介绍量子力学的基本原理和概念。
波粒二象性量子力学的核心概念之一是波粒二象性,即微观粒子既具有粒子性质又具有波动性质。
这一现象最早由德布罗意提出,他假设所有物质都具有波粒二象性,并提出了著名的德布罗意波长公式:λ = h/p,其中λ是波长,h是普朗克常数,p是粒子的动量。
不确定性原理另一个重要的概念是海森堡提出的不确定性原理,它指出我们无法同时精确测量一个粒子的位置和动量。
这个原理可以用数学公式表示为:Δx * Δp ≥ ħ/2,其中Δx是位置的不确定度,Δp是动量的不确定度,ħ是约化普朗克常数。
薛定谔方程薛定谔方程是量子力学的基本方程,描述了量子系统的演化。
对于非相对论性量子系统,薛定谔方程可以写为:iħ∂ψ/∂t = Hψ,其中ψ是波函数,H是哈密顿算符,它包含了系统的所有信息。
量子态和波函数在量子力学中,一个系统的状态由波函数ψ描述。
波函数是一个复数函数,其模方|ψ|^2表示了在某个位置找到粒子的概率密度。
波函数的归一化条件是∫|ψ|^2dV=1,确保总概率为1。
量子力学的应用量子力学在许多领域都有应用,包括原子物理、分子化学、凝聚态物理、核物理等。
例如,量子力学解释了原子的稳定性、化学反应的机制、半导体的工作原理等。
此外,量子力学还推动了新兴技术的发展,如量子计算、量子通信等。
总结总之,量子力学是一门深奥而美丽的学科,它改变了我们对自然界的认识。
虽然量子力学的概念可能难以直观理解,但它为我们提供了一种强大的工具来探索和理解微观世界的奥秘。
第十七章量子力学基础知识量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。
微观粒子运动的特征1 、几个代表性的实验经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。
它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。
19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。
(1)黑体辐射黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。
绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。
进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。
实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。
在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。
许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。
瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。
特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。
维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。
1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简谐振动,这种振子的能量只能采取某一最小能量单位ε0的整数倍数值。