高中数学第一章坐标系1_3曲线的极坐标方程学案新人教B版选修4_4
- 格式:doc
- 大小:372.50 KB
- 文档页数:9
圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。
(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。
高中数学选修4-4教案第一备课人:姚雪艳第一讲 坐标系一 平面直角坐标系课题:2、平面直角坐标系中的伸缩变换 教学目标:知识与技能:平面直角坐标系中的坐标变换 过程与方法:体会坐标变换的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识教学重点:理解平面直角坐标系中的坐标变换、伸缩变换 教学难点:会用坐标变换、伸缩变换解决实际问题 授课类型:新授课教学措施与方法:启发、诱导发现教学. 教学过程:一、阅读教材P4—P8问题探究1:怎样由正弦曲线sin y x =得到曲线sin 2y x =?思考:“保持纵坐标不变横坐标缩为原来的一半”的实质是什么?问题探究2:怎样由正弦曲线sin y x =得到曲线3sin y x =?思考:“保持横坐标不变纵坐标缩为原来的3倍”的实质是什么?问题探究3:怎样由正弦曲线sin y x =得到曲线3sin 2y x =?二、新课讲解:定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应P’(x’,y’).称ϕ为平面直角坐标系中的伸缩变换 注(1) '(0):'(0)x x y y λλϕμμ=>⎧⎨=>⎩0,0λμ>>(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。
例1、在直角坐标系中,求下列方程所对应的图形经过伸缩变换''23x x y y⎧=⎨=⎩后的图形。
(1)2x+3y=0; (2)221x y +=例2、在同一平面坐标系中,经过伸缩变换⎩⎨⎧='='y y x x ,3后,曲线C 变为曲线9922='+'y x ,求曲线C 的方程并画出图象。
三、知识应用:1、已知x x f x x f ωsin )(,sin )(21==()0>ω)(2x f 的图象可以看作把)(1x f 的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为()A .21B .2 C.3 D.312、在同一直角坐标系中,经过伸缩变换⎩⎨⎧='='y y x x 35后,曲线C 变为曲线22281,x y ''+=则曲线C 的方程为( )A .2225361x y += B.2291001x y +=C .2210241x y += D.22281259x y += 3、在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy x x 3121后的图形。
【2019-2020年度】人教B 版高中数学-选修4-4教学案-第一章球坐标系(Word )[读教材·填要点]1.球坐标系设空间中一点M 的直角坐标为(x ,y ,z),点M 在xOy 坐标面上的投影点为M0,连接OM 和OM0,设z 轴的正向与向量的夹角为φ,x 轴的正向与0的夹角为θ,M 点到原点O 的距离为r ,则由三个数r ,θ,φ构成的有序数组(r ,θ,φ)称为空间中点M 的球坐标.在球坐标中限定r≥0,0≤θ<2π,0≤φ≤π.OM OM2.直角坐标与球坐标的转化空间点M 的直角坐标(x ,y ,z)与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =rsin φ·cos θ,y =rsin φ·sin θ,z =rcos φ. [小问题·大思维]球坐标与平面上的极坐标之间有什么关系?提示:空间某点的球坐标中的第二个坐标θ就是该点在xOy 平面上投影点的极坐标中的第二个坐标θ.[例1][思路点拨] 本题考查球坐标与直角坐标的变换关系.解答本题需要先搞清球坐标中各个坐标的意义,然后代入相应的公式求解即可.[精解详析] ∵M 的球坐标为,∴r =5,φ=,θ=.由变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =5sin 5π6cos 4π3=-54,y =5sin 5π6sin 4π3=-534,z =5cos 5π6=-532.故它的直角坐标为. 已知球坐标求直角坐标,可根据变换公式直接求解,但要分清哪个角是φ,哪个角是θ.1.已知点P 的球坐标为,求它的直角坐标.解:由变换公式得x =rsin φcos θ=4sin cos =2,y =rsin φsin θ=4sin sin =2,z =rcos φ=4cos =-2.∴它的直角坐标为(2,2,-2).[例[思路点拨] 本题考查直角坐标与球坐标的变换关系.解答本题只需将已知条件代入变换公式求解即可,但应注意θ与φ的取值范围.[精解详析] 由坐标变换公式,可得r ===2.由rcos φ=z =,得cos φ==,φ=.又tan θ==1,θ=(x>0,y>0),所以知M点的球坐标为.由直角坐标化为球坐标时,我们可以先设点M的球坐标为(r,θ,φ),再利用变换公式求出r,θ,φ代入点的球坐标即可;也可以利用r2=x2+y2+z2,tan θ=,cos φ=求解.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.2.设点M的直角坐标为,求它的球坐标.解:由变换公式得r===1.由rcos φ=z=-得cos φ=-,φ=.又tan θ==(r>0,y>0),得θ=,∴M的球坐标为.[例3] O为端点且与零子午线相交的射线Ox为极轴,建立坐标系.有A,B两个城市,它们的球坐标分别为AR,,,BR,,.飞机沿球的大圆圆弧飞行时,航线最短,求最短的路程.[思路点拨] 本题考查球坐标系的应用以及球面上的最短距离.解答本题需要搞清球的大圆的圆心角及求法.[精解详析] 如图所示,因为A,B,可知∠AOO1=∠O1OB=,∴∠O1AO=∠O1BO=.又∠EOC=,∠EOD=,∴∠COD=-=.∴∠AO1B=∠COD=.在Rt△OO1B中,∠O1BO=,OB=R,∴O1B=O1A=R.∵∠AO1B=,∴AB=R.在△AOB中,AB=OB=OA=R,∴∠AOB=.故飞机沿经过A,B两地的大圆飞行,航线最短,其路程为R.我们根据A,B两地的球坐标找到纬度和经度,当飞机沿着过A,B两地的大圆飞行时,飞行最快.求所飞行的路程实际上是要求我们求出过A,B两地的球面距离.3.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A,B8,θB,,求出这两个截面间的距离.解:由已知,OA=OB=8,∠AOO1=,∠BOO1=.∴在△AOO1中,OO1=4.在△BOO2中,∠BOO2=,OB=8,∴OO2=4,则O1O2=OO1+OO2=8.即两个截面间的距离O1O2为8.一、选择题1.已知一个点P的球坐标为,点P在xOy平面上的投影点为P0,则与的夹角为( )OPA.- B.3π4C.D.π3解析:选A ∵φ=,∴OP 与OP0之间的夹角为=. 2.点M 的球坐标为(r ,φ,θ)(φ,θ∈(0,π)),则其关于点(0,0,0)的对称点的坐标为( )A .(-r ,-φ,-θ)B .(r ,π-φ,π-θ)C .(r ,π+φ,θ)D .(r ,π-φ,π+θ)解析:选D 设点M 的直角坐标为(x ,y ,z),则点M 关于(0,0,0)的对称点M′的直角坐标为(-x ,-y ,-z),设M′的球坐标为(r′,φ′,θ′),因为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,所以⎩⎨⎧ r′sin φ′cos θ′=-rsin φcos θ,r′sin φ′sin θ′=-rsin φsin θ,r′cos φ′=-rcos φ,可得⎩⎨⎧ r′=r ,φ′=π-φ,θ′=π+θ,即M′的球坐标为(r ,π-φ,π+θ).3.点P 的球坐标为,则它的直角坐标为( )A .(1,0,0)B .(-1,-1,0)C .(0,-1,0)D .(-1,0,0)解析:选D x =rsin φcos θ=1·sin ·cos π=-1, y =rsin φsin θ=1·sinsin π=0,z =rcos φ=1·cos=0,∴它的直角坐标为(-1,0,0).4.已知点P 的柱坐标为,点B 的球坐标为,则这两个点在空间直角坐标系中的点的坐标为( )A .P(5,1,1),B ⎝⎛⎭⎪⎫364,324,62 B .P(1,1,5),B ⎝⎛⎭⎪⎫364,324,62 C .P ,B(1,1,5)D .P(1,1,5),B ⎝ ⎛⎭⎪⎫62,364,324 解析:选B 球坐标与直角坐标的互化公式为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,柱坐标与直角坐标的互化公式为⎩⎨⎧ x =ρcos θ,y =ρsin θ,z =z.设P 点的直角坐标为(x ,y ,z),则x =cos =×=1, y =sin =1,z =5.设B 点的直角坐标为(x′,y′,z′),则x′=sin cos =××=,y′=sin sin =××=,z′=cos =×=.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为.二、填空题5.以地球中心为坐标原点,地球赤道平面为xOy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为zOx坐标面,如图所示.若某地在西经60°,南纬45°,地球的半径为R ,则该地的球坐标可表示为________.解析:由球坐标的定义可知,该地的球坐标为R ,,.答案:⎝ ⎛⎭⎪⎫R ,5π3,3π4 6.已知点M 的球坐标为,则它的直角坐标为________,它的柱坐标是________.解析:由坐标变换公式直接得直角坐标和柱坐标.答案:(-2,2,2) ⎝ ⎛⎭⎪⎫22,3π4,22 7.设点M 的直角坐标为(-1,-1,),则它的球坐标为________. 解析:由坐标变换公式,得r ===2,cos φ==,∴φ=.∵tan θ===1,又∵x<0,y<0,∴θ=.∴M 的球坐标为.答案:⎝ ⎛⎭⎪⎫2,5π4,π4 8.在球坐标系中,方程r =1表示________,方程φ=表示空间的________.解析:数形结合,根据球坐标的定义判断形状.答案:球心在原点,半径为1的球面 顶点在原点,轴截面顶角为的圆锥面三、解答题9.如图,请你说出点M 的球坐标.解:由球坐标的定义,记|OM|=R ,OM 与z 轴正向所夹的角为φ.设M 在xOy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点M 的位置就可以用有序数组(R ,θ,φ)表示.∴M 点的球坐标为M(R ,θ,φ).10.已知点P 的球坐标为,求它的直角坐标.解:根据坐标变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =2sin 3π4cos 7π6=2·22·⎝ ⎛⎭⎪⎫-32=-62,y =2sin 3π4sin 7π6=2·22·⎝ ⎛⎭⎪⎫-12=-22,z =2·cos 3π4=2·⎝ ⎛⎭⎪⎫-22=-2,∴点P 的直角坐标为. 11.如图,建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标.(其中O 是△BCD 的中心)解:O 是△BCD 的中心,则OC =OD =OB =,AO =.∴C ,D ,B,A.[对应学生用书P19][对应学生用书P19]1的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).2.坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 线段AB 与CD 互相垂直且平分于点O ,|AB|=2a ,|CD|=2b ,动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.[解] 以AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,如图所示.设P(x ,y),则A(-a,0),B(a,0),C(0,-b),D(0,b),由题设,知|PA|·|PB|=|PC|·|PD|.∴ ·错误!= ·.化简得x2-y2=,∴动点P 的轨迹方程为x2-y2=.设点点P(X ,Y)对应点P′(x′,y′),称这种变换为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换后,曲线C 变为曲线(X -5)2+(Y +6)2=1,求曲线C 的方程,并判断其形状.[解] 将代入(X -5)2+(Y +6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎪⎫x -522+(y +3)2=. 该曲线是以为圆心,为半径的圆.1F(ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程.2.平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处.一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.3.求轨迹方程的方法有直接法、定义法、相关点代入法,其在极坐标中仍然适用.注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC的底边BC=10,∠A=∠B,以B为极点,BC为极轴,求顶点A的轨迹的极坐标方程.[解] 如图,令A(ρ,θ).△ABC内,设∠B=θ,∠A=,又|BC|=10,|AB|=ρ,所以由正弦定理,得=.化简,得A点轨迹的极坐标方程为ρ=10+20cos θ.1x轴的正半轴作为极轴并在两种坐标系下取相同的单位.2.互化公式为x=ρcos θ,y=ρsin θ3.直角坐标方程化极坐标方程可直接将x=ρcos θ,y=ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] 把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线.(1)ρ=2acos θ(a>0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2acos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x2+y2=2ax.整理得x2+y2-2ax=0,即(x-a)2+y2=a2.它是以(a,0)为圆心,以a为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x2+y2=9x+9y,又可化为2+2=.它是以为圆心,以为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x2+y2=16.它是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x-3y=5.它是一条直线.1M0,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点M0在平面xOy上的极坐标.这时点M的位置可由有序数组(ρ,θ,z)表示,叫做点M的柱坐标.2.球坐标:建立空间直角坐标系O xyz,设M是空间任意一点,连接OM,记|OM|=r,OM与Oz轴正向所夹的角为φ,设M在xOy平面上的射影为M0.Ox轴按逆时针方向旋转到OM0时,所转过的最小正角为θ,则M(r,θ,φ)为M点的球坐标.[例5] 在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.[解] 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r =1,h =2,∴V=Sh =πr2h =2π.[例6] 如图,长方体OABC —D′A′B′C′中,OA =OC =a ,BB′=OA ,对角线OB′与BD′相交于点P ,顶点O 为坐标原点,OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP|,φ=∠D′OP,θ=∠AOB,而|OP|=a ,∠D′OP=∠OB′B,tan ∠OB′B==1,∴∠OB′B=,θ=∠AOB=.∴点P 的球坐标为.[对应学生用书P21]一、选择题1.点M 的直角坐标是(-1,),则点M 的极坐标为( )A.B.⎝ ⎛⎭⎪⎫2,-π3C.D.,k∈Z解析:选C ρ2=(-1)2+()2=4,∴ρ=2.又∴⎩⎪⎨⎪⎧ cos θ=-12,sin θ=32.∴θ=π+2k π,k ∈Z.即点M 的极坐标为,k∈Z.2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1解析:选 C ρ(ρcos θ-1)=0,ρ==0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ(ρ2=4ρsin θ),则x=0,或x2+y2=4y.4.极坐标系内曲线ρ=2cos θ上的动点P与定点Q的最近距离等于( )A.-1B.-1C.1 D.2解析:选A 将曲线ρ=2cos θ化成直角坐标方程为(x-1)2+y2=1,点Q的直角坐标为(0,1),则P到Q的最短距离为点Q与圆心的距离减去半径,即-1.二、填空题5.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为________________.解析:原方程化为直角坐标方程为-=1,∴c==,双曲线在直角坐标系下的焦点坐标为(,0),(-,0),故在极坐标系下,曲线的焦点坐标为(,0),(,π).答案:(,0),(,π)6.点M的球坐标为,则它的直角坐标为________.解析:x=6·sin·cos =3,y=6sinsin=3,z=6cos=0,∴它的直角坐标为(3,3,0).答案:(3,3,0)7.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A,B两点,则|AB|=________.解析:过点(3,0)且与极轴垂直的直线的直角坐标方程为x=3,曲线ρ=4cos θ化为直角坐标方程为x2+y2-4x=0,把x=3代入上式,得9+y2-12=0,解得,y1=,y2=-,所以|AB|=|y1-y2|=2.答案:238.在极坐标系中,过点A(6,π)作圆ρ=-4cos θ的切线,则切线长为________.解析:圆ρ=-4cos θ化为(x+2)2+y2=4,点(6,π)化为(-6,0),故切线长为==2.答案:23三、解答题9.求由曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换.解:设变换为将其代入方程X2+Y2=1,得a2x2+b2y2=1.又∵4x2+9y2=36,即+=1,∴又∵a>0,b>0,∴a=,b=.∴将曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换为⎩⎪⎨⎪⎧ X =13x ,Y =12y.10.已知A ,B 两点的极坐标分别是,,求A ,B 两点间的距离和△AOB 的面积.解:求两点间的距离可用如下公式:|AB|===2.S△AOB=|ρ1ρ2sin(θ1-θ2)|=2×4×sin=×2×4=4.11.在极坐标系中,已知圆C 的圆心C ,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足=,求动点P 的轨迹方程.解:(1)如图所示,设M(ρ,θ)为圆C 上任意一点.在△OCM 中,可知|OC|=3,|OM|=ρ,|CM|=1,∠COM =.根据余弦定理,得1=ρ2+9-2·ρ·3·cos .化简整理,得ρ2-6·ρcos +8=0为圆C 的轨迹方程.(2)设Q(ρ1,θ1),则有ρ-6·ρ1cos +8=0.①设P(ρ,θ),则OQ∶QP=ρ1∶(ρ-ρ1)=2∶3⇒ρ1=ρ, 又θ1=θ,所以⎩⎨⎧ ρ1=25ρ,θ1=θ.代入①得ρ2-6·ρcos +8=0,整理得ρ2-15ρcos +50=0为P 点的轨迹方程.。
1.3 曲线的极坐标方程[对应学生用书P8][读教材·填要点]1.曲线的极坐标方程在给定的平面上的极坐标系下,有一个二元方程F (ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有的点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.2.直线的极坐标方程(1)当直线l 过极点,从极轴到l 的角是θ0,则l 的方程为θ=θ0. (2)当直线l 过点M (d,0)且垂直于极轴时,l 的方程为ρcos θ=d . (3)当直线l 过点M (d ,π2),且平行于极轴时,l 的方程为ρsin_θ=d .(4)极点到直线l 的距离为d ,极轴到过极点的直线l 的垂线的角度为α,此时直线l 的方程为ρcos_(α-θ)=d .[小问题·大思维]1.在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?提示:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如,给定曲线ρ=θ,设点P 的一极坐标为⎝ ⎛⎭⎪⎫π4,π4,那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标⎝⎛⎭⎪⎫π4,9π4就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2.在直线的极坐标方程中,ρ的取值范围是什么? 提示:ρ的取值范围是全体实数.[对应学生用书P8][例1] 进行直角坐标方程与极坐标方程的互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)ρcos2θ2=1;(4)ρ2cos 2θ=4;(5)ρ=12-cos θ. [思路点拨] 本题考查极坐标与直角坐标的互化公式. [精解详析] (1)将x =ρcos θ,y =ρsin θ代入y 2=4x , 得(ρsin θ)2=4ρcos θ. 化简,得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0. 化简,得ρ2-2ρcos θ-1=0. (3)∵ρcos2θ2=1, ∴ρ·1+cos θ2=1,即ρ+ρcos θ=2 ∴x 2+y 2+x =2. 化简,得y 2=-4(x -1). (4)∵ρ2cos 2θ=4, ∴ρ2cos 2θ-ρ2sin 2θ=4, 即x 2-y 2=4.(5)∵ρ=12-cos θ,∴2ρ-ρcos θ=1. ∴2x 2+y 2-x =1.化简,得3x 2+4y 2-2x -1=0.直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.1.求极坐标方程ρcos ⎝ ⎛⎭⎪⎫θ-π6=1所表示的直角坐标方程.解:将ρcos ⎝ ⎛⎭⎪⎫θ-π6=1化为32ρcos θ+12ρsin θ=1. 将ρcos θ=x ,ρsin θ=y 代入上式,得32x +y2=1, 即3x +y -2=0.[例2] 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.[思路点拨] (1)利用两角差余弦公式展开,结合互化公式可得直角坐标方程. (2)先求出P 点的直角坐标,再求出OP 的极坐标方程. [精解详析] (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)∵M 点的直角坐标为(2,0),N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233, 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33. 则P 点的极坐标为⎝⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).2.设M 是定圆O 内一定点,任作半径OA ,连接MA ,自M 作MP ⊥MA 交OA 于P ,求P 点的轨迹方程.解:以O 为极点,射线OM 为极轴,建立极坐标系,如图. 设定圆O 的半径为r ,OM =a ,P (ρ,θ)是轨迹上任意一点.∵MP ⊥MA ,∴|MA |2+|MP |2=|PA |2.由余弦定理,可知|MA |2=a 2+r 2-2ar cos θ, |MP |2=a 2+ρ2-2a ρcos θ.而|PA |=r -ρ,由此可得a 2+r 2-2ar cos θ+a 2+ρ2-2a ρcos θ=(r -ρ)2. 整理化简,得ρ=a a -r cos θa cos θ-r.[例3] 求出下列直线的极坐标方程:(1)过定点M (ρ0,θ0),且与极轴成α弧度的角; (2)过定点M (ρ0,θ0),且与直线θ=θ0垂直.[思路点拨] 本题考查直线的极坐标方程的求法.解答本题需要根据已知条件画出极坐标系,然后借助平面几何的知识建立ρ与θ间的关系.[精解详析] (1)设P (ρ,θ)为直线上任意一点(如图),且记∠OPM =∠1,∠OMP =∠2,则∠1=α-θ,∠2=π-(α-θ0). 在△OMP 中应用正弦定理得ρsin ∠2=ρ0sin ∠1,即ρ=ρ0·sin π-∠2 sin ∠1=ρ0·sin α-θ0sin α-θ .即直线方程为ρsin(θ-α)=ρ0sin(θ0-α).(2)设P (ρ,θ)为直线上任意一点(如图所示),△OMP 为直角三角形,显然有ρcos (θ-θ0)=ρ0.这就是所求直线方程.求直线极坐标方程的步骤:(1)设(ρ,θ)为直线上任一点的极坐标. (2)写出动点满足的几何条件. (3)把上述条件转化为ρ,θ的等式. (4)化简整理.3.求过A ⎝⎛⎭⎪⎫3,π3且和极轴所成角为3π4的直线方程. 解:如图所示,A ⎝⎛⎭⎪⎫3,π3,即|OA |=3,∠AOB =π3.设M (ρ,θ)为直线上任一点, 由已知得∠MBx =3π4,∴∠OAB =3π4-π3=5π12.∴∠OAM =π-5π12=7π12.∠OMA =∠MBx -θ=3π4-θ.在△MOA 中,根据正弦定理,得3sin ⎝ ⎛⎭⎪⎫3π4-θ=ρsin7π12.sin 7π12=sin ⎝ ⎛⎭⎪⎫π4+π3=2+64, 将sin ⎝⎛⎭⎪⎫3π4-θ展开,化简上面的方程,可得ρ(sin θ+cos θ)=332+32. ∴过A ⎝ ⎛⎭⎪⎫3,π3且和极轴所成角为3π4的直线方程为ρ(sin θ+cos θ)=332+32.[对应学生用书P10]一、选择题1.极坐标方程cos θ=22(ρ≥0)表示的曲线是( ) A .余弦曲线 B .两条相交直线 C .一条射线 D .两条射线解析:选D ∵cos θ=22,∴θ=±π4+2k π(k ∈Z ). 又∵ρ≥0,∴cos θ=22表示两条射线. 2.在极坐标系中与曲线C :ρ=4sin θ相切的一条直线的方程为( ) A .ρcos θ=2 B .ρsin θ=2 C .ρ=4sin ⎝⎛⎭⎪⎫θ+π3 D .ρ=4sin ⎝⎛⎭⎪⎫θ-π3解析:选A ρ=4sin θ的普通方程为x 2+(y -2)2=4,ρcos θ=2的普通方程为x =2,圆x 2+(y -2)2=4与直线x =2显然相切.3.直线θ=α和直线ρsin(θ-α)=1的位置关系是( ) A .垂直 B .平行 C .相交但不垂直D .重合解析:选B 直线θ=α化为直角坐标方程为y =x tan α,ρsin(θ-α)=1化为ρsinθcos α-ρcos θsin α=1,即y =x tan α+1cos α.所以两直线平行.4.过点A (5,0)和直线θ=π4垂直的直线的极坐标方程是( ) A .ρsin ⎝ ⎛⎭⎪⎫π4+θ=5 B .ρcos ⎝ ⎛⎭⎪⎫π4+θ=522C .ρsin ⎝ ⎛⎭⎪⎫π4+θ=522D .ρsin ⎝ ⎛⎭⎪⎫π4-θ=522解析:选C 直线θ=π4即直线y =x ,∴过点A (5,0)和直线θ=π4垂直的直线方程为y =-x +5,其极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4+θ=522.二、填空题5.在极坐标系中,直线l 的方程为ρsin θ=3,则点⎝⎛⎭⎪⎫2,π6到直线l 的距离为________.解析:将直线l 的极坐标方程ρsin θ=3化为直角坐标方程为y =3,点⎝ ⎛⎭⎪⎫2,π6在直角坐标系中为(3,1),故点⎝⎛⎭⎪⎫2,π6到直线l 的距离为2.答案:26.在极坐标系中,圆ρ=4被直线θ=π4分成两部分的面积之比是________.解析:∵直线θ=π4过圆ρ=4的圆心,∴直线把圆分成两部分的面积之比是1∶1.答案:1∶17.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.解析:由ρ=2sin θ,得ρ2=2ρsin θ, 其普通方程为x 2+y 2=2y .ρcos θ=-1的普通方程为x =-1.联立⎩⎪⎨⎪⎧x 2+y 2=2y ,x =-1,解得⎩⎪⎨⎪⎧x =-1,y =1,点(-1,1)的极坐标为⎝⎛⎭⎪⎫2,3π4. 答案:⎝⎛⎭⎪⎫2,3π4 8.在极坐标系中,定点A (1,π2),点B 在直线l :ρcos θ+ρsin θ=0上运动.当线段AB 最短时,点B 的极坐标是________.解析:将ρcos θ+ρsin θ=0化为直角坐标方程为x +y =0,点A ⎝⎛⎭⎪⎫1,π2化为直角坐标得A (0,1).如图,过A 作AB ⊥直线l 于B .因为△AOB为等腰直角三角形,又因为|OA |=1,则|OB |=22,θ=3π4,故B 点的极坐标是B ⎝ ⎛⎭⎪⎫22,3π4. 答案:⎝⎛⎭⎪⎫22,3π4 三、解答题9.求过(-2,3)点且斜率为2的直线的极坐标方程. 解:由题意知,直线的直角坐标方程为y -3=2(x +2), 即2x -y +7=0.设M (ρ,θ)为直线上任意一点,将x =ρcos θ,y =ρsin θ代入直角坐标方程 2x -y +7=0,得2ρcos θ-ρsin θ+7=0. 这就是所求的极坐标方程.10.在极坐标系中,曲线C :ρ=10cos θ和直线l :3ρcos θ-4ρsin θ-30=0相交于A ,B 两点,求线段|AB |的长.解:分别将曲线C 和直线l 的极坐标方程化为直角坐标方程: 圆C :x 2+y 2=10x ,即(x -5)2+y 2=25,圆心C (5,0). 直线l :3x -4y -30=0.因为圆心C 到直线l 的距离d =|15-0-30|5=3,所以|AB |=225-d 2=8.11.如图,点A 在直线x =4上移动,△OPA 为等腰直角三角形,△OPA 的顶角为∠OPA (O ,P ,A 依次按顺时针方向排列),求点P 的轨迹方程,并判断轨迹形状.解:取O 为极点,x 正半轴为极轴,建立极坐标系,则直线x =4的极坐标方程为ρcos θ=4.设A (ρ0,θ0),P (ρ,θ). ∵点A 在直线ρcos θ=4上, ∴ρ0cos θ0=4.①∵△OPA 为等腰直角三角形,且∠OPA =π2,而|OP |=ρ,|OA |=ρ0,以及∠POA =π4,∴ρ0=2ρ,且θ0=θ-π4.②把②代入①,得点P 的轨迹的极坐标方程为 2ρcos ⎝⎛⎭⎪⎫θ-π4=4. 由2ρcos ⎝⎛⎭⎪⎫θ-π4=4得ρ(cos θ+sin θ)=4. ∴点P 轨迹的普通方程为x +y =4,是过点(4,0)且倾斜角为3π4的直线.。