超前锚杆预支护技术
- 格式:ppt
- 大小:2.05 MB
- 文档页数:36
超前支护技术在采矿工程中的应用研究在当今的采矿工程领域,超前支护技术扮演着至关重要的角色。
随着采矿深度的增加、地质条件的日益复杂以及对安全生产和高效开采的更高要求,超前支护技术不断发展和创新,为采矿作业提供了有力的保障。
一、超前支护技术概述超前支护,顾名思义,是在采矿工程的掘进或开采工作面前方,预先采取的支护措施,以防止围岩变形、坍塌,保障作业人员和设备的安全,同时为后续的施工创造良好的条件。
其主要作用包括:1、控制围岩变形:通过对前方围岩的支撑和约束,减少因开采引起的位移和变形。
2、提高围岩稳定性:增强岩体的自身承载能力,降低发生冒顶、片帮等事故的风险。
3、保障施工安全:为作业人员提供一个相对安全的工作空间,减少因顶板坍塌等造成的人员伤亡。
常见的超前支护技术类型多种多样,如超前锚杆支护、超前管棚支护、超前注浆支护等。
每种技术都有其特点和适用范围。
二、超前支护技术的主要类型及特点(一)超前锚杆支护超前锚杆是将锚杆沿隧道掘进轮廓线向前方倾斜安装的一种支护方式。
它的优点在于施工简单、成本较低,能够迅速提供一定的支护阻力。
然而,其支护强度相对较弱,适用于地质条件较好、围岩稳定性较高的情况。
(二)超前管棚支护超前管棚通常由钢管组成,通过在前方形成一个钢管棚架来支护围岩。
管棚的支护强度较高,能够有效控制较大范围内的围岩变形。
但施工工艺较为复杂,成本也相对较高,适用于地质条件复杂、存在断层破碎带等不良地质情况。
(三)超前注浆支护超前注浆是通过向围岩中注入浆液,改善围岩的物理力学性质,提高其自稳能力。
这种方法能够有效地填充围岩中的裂隙和孔隙,增强围岩的整体性和强度。
但注浆效果受到注浆材料、注浆工艺等多种因素的影响,需要严格控制施工质量。
三、超前支护技术在采矿工程中的应用实例(一)煤矿开采中的应用在煤矿开采中,由于煤层的赋存条件和地质构造复杂多变,超前支护技术的应用尤为重要。
例如,在掘进工作面遇到断层时,采用超前管棚支护可以有效地防止顶板垮落,保障掘进工作的顺利进行。
煤矿掘进巷道锚杆支护技术摘要:煤矿掘进巷道内部条件复杂,施工面强度大、危险度高,需要加强防护工作。
为防止掘进安全事故的出现,需要采取有效的超前支护措施,保障人员安全的同时,提高煤矿掘进效率。
锚杆支护是使用高强度的锚索对开采的围岩区域进行注浆加固,控制开采区域的形变量,降低岩体破碎和脱落风险。
锚杆支护能形成一个防护支架,保障机械设备和施工人员的安全,促进煤矿掘进有序地进行。
关键词:煤矿掘进巷道;锚杆支护;技术1煤矿掘进巷道锚杆支护技术概述在实施该技术的过程中,可以以螺丝钢铁为主要材质,保证支撑力。
在开展技术施工前,施工人员应根据地下环境的具体情况,选择不同类型的锚棒。
如果周围岩石稳定,可以选择直径较小的锚带。
如果周围岩石不稳定,可以选择直径较大的锚棒。
如果施工区域内的煤矿比较柔软,则选择较长的锚带施工。
但是,该技术后期的维护保修和检修工作比较麻烦,在具体应用过程中,事故无法预断,地形条件非常复杂的坑道存在较多的安全风险。
另外,在实施这项技术时,对设计人员和施工人员的技能水平要求很高,只有结合工程的实际需要,设计出合理的施工设计图,才能保证施工人员的顺利施工,充分发挥锚带的支撑作用。
传统煤矿开采时,施工人员使用不同类型的金属支架支撑坑道,但这种形式由于参与人员过多,工程人力成本上升,工程整体经济效益下降。
同时,该支承方式的安全性得不到良好的保障,不符合现代煤矿生产环境的需要。
通过锚支承技术的应用,可以有效地提高坑道的安全可靠性,减少工程费用,提高工程效率。
应用这一技术时,施工人员会根据坑道的天花板合理排列锚带的距离。
在固定力的影响下,每个主播周围都会形成压缩区,施工人员将这一区域连接起来形成压缩区,防止周围岩石松动或脱落。
该技术可以促进螺栓的顶棚力发挥合成洑的作用,提高坑道的支撑力,还可以有效避免坑道屋顶的岩石崩塌,增强生产安全性。
2具体应用措施2.1综合机械化掘进技术应用综合机械化掘进技术是现阶段被广泛应用于煤矿巷道开展掘进作业的高效化技术措施。
锚杆支护技术规范(正式)第一章总则1 为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策,确保正确地进行锚杆支护设计和施工质量,促进煤巷锚杆支护技术的健康发展,特制定本规范.2 锚杆支护巷道施工必须进行设计。
锚杆支护设计要注重现场调查研究,吸取国内外锚杆支护设计、施工和监测方面的先进经验,积极采用新技术、新工艺、新材料,做到技术先进、经济合理、安全可靠。
新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护试验工作,锚杆支护设计要组织有关单位会审,并报集团公司备案。
3 对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必须进行技术培训。
4 在应用锚杆支护的巷道中,必须有矿压及安全监测设计。
在施工中必须按设计设置矿压及安全监测装置,并有专人负责监测.第二章巷道围岩的稳定性分类5 采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、施工与管理提供依据。
6 巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执行。
7 煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分类指标。
其它条件下的煤巷(如煤层上山)稳定性分类指标,可根据具体情况对分类指标进行相应替代,详见表1和表2.缓倾斜、倾斜薄及中厚煤层回采巷道分类指标煤层上、下山分类指标第三章锚杆支护设计8 锚杆支护设计应贯彻地质力学评估-初始设计—监测与信息反馈-修改设计等四个步骤.锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法,结合锚杆支护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理论或锚杆楔固理论进行设计计算;亦可采用工程类比法进行设计。
无论采用哪种设计方法,都必须对支护状况进行监测,包括锚杆受力、巷道围岩表面与深部位移及弱化范围、顶板离层等内容。
根据监测信息反馈结果对设计进行验证或修改。
第9条为进行科学的锚杆支护设计,必须具备表3所要求的原始资料。
超前锚杆施工方案一、引言超前锚杆施工是一种在地下岩土中应用的加固和支护技术,被广泛应用于地铁隧道、高速公路、桥梁等工程中。
本文将介绍超前锚杆施工的原理、施工步骤、质量控制等相关内容。
二、施工原理超前锚杆施工依靠预先钻孔,安装钢筋及灌注混凝土的方式,将土体和锚杆形成一个整体,从而加固土体,增强其承载能力。
在施工过程中,需要根据不同的工程条件和土体情况选择合适的锚杆类型和施工方案。
三、施工步骤1.勘察设计阶段:根据工程要求和地质条件进行勘察设计,确定锚杆的直径、埋设深度、施工间距等参数。
2.施工准备阶段:确定施工人员、设备及材料,制定详细的施工计划,进行现场的安全检查和防护措施。
3.钻孔施工:根据设计要求在地下进行锚杆孔的钻掘,保证孔道的质量和准确度。
4.锚杆安装:将预制的锚杆通过孔道灌注混凝土,确保锚杆与土体间的密实连接。
5.荷载试验:进行荷载试验,验证锚杆的承载能力是否符合设计要求。
6.施工完工:检查施工质量,清理施工现场,编制施工记录和报告。
四、质量控制1.材料质量控制:选择合格的锚杆材料,进行质量检测和验收,确保材料符合设计要求。
2.施工工艺控制:严格按照施工工艺要求进行操作,保证施工过程中不出现质量问题。
3.质量检测:对施工过程和结果进行抽查和检测,确保锚杆的质量符合标准。
五、安全注意事项1.在施工现场严格按照安全操作规程进行操作,做好施工现场的安全防护。
2.确保作业人员具有相关证书和资质,遵守施工现场的各项规定。
3.定期进行安全检查和隐患排查,消除安全隐患,确保施工现场安全。
六、总结超前锚杆施工是一种有效的地下工程加固技术,通过合理的设计和施工操作,可以提高工程的安全可靠性和长期稳定性。
在实际工程中,施工单位需要严格按照相关标准和规范进行施工,保证施工质量和安全,确保工程顺利完成。
以上为超前锚杆施工方案的基本介绍,希望对读者有所帮助。
隧道洞口段的支护技术在不良地质条件下的隧道洞口段施工前,将隧道洞口段预加固,使隧道洞口段施工在预加固结构的保护下进行开挖,对隧道洞口段施工安全施工质量有着重要作用。
隧道洞口段预加固方法很多,主要有地表加固、洞内支护两大类。
一、隧道洞口段的地表加固隧道洞口段,埋深较小而变化幅度较大,地质条件复杂,地层条件一般都很差,围岩不稳定,由于施工方法不当或辅助加固措施不足,经常造成地表坡面的破坏。
常用的地表加固有以下几种。
1.直接加固法直接加固法通过改变滑坡体的抗滑力及下滑力来改变滑动体滑动面上的平衡条件,主要是通过增加边坡的抗滑力来实现,如填土、地表锚杆、抗滑桩、挡墙、错索等方法,其中地表锚杆施工方法是最为常用的方法。
2.间接加固法间接加固法是以控制滑动因素、降低滑动力为目的。
其中水的影响是极大的,它可以减小围岩强度,促进滑动,常采用防渗法和排水法,如防渗层、暗沟、疏干巷道等。
间接加固法中还有排土法,它是通过减小滑坡体的下滑力来实现,即通过改变边坡的平衡条件,从而提高边坡的稳定性。
应当注意的是,不是任何不稳定边坡经过排土法就能增加其稳定系数,这与排土方式有关,要具体分析。
一般情况下,排土法和填土法是结合在一起使用的。
二、隧道洞口段的支护隧道洞口段的支护,有超前管棚支护、超前小导管注浆、超前锚杆预支护等方法。
1.超前管棚支护超前管棚是沿开挖轮廓线周线,钻设与隧道轴线平行(或有微小角度)的钻孔,随后插入不同直径的钢管,并向管内注浆,固结管周边的围岩,并在预定的范围内形成棚架的支护体系,如图11-1所示。
图11-1 超前管棚支护示意图超前管棚能提高管周围的抗剪强度,先行支护围岩,把因开挖引起的松弛控制在最小范围内,具有梁效应和加固围岩效应。
梁效应即为因钢管是先行施设,掘进时,钢管在以掌子面和后方的支撑支持下,形成梁式结构,防止围岩崩塌和松弛。
加固围岩效应即为钢管插入后,压注水泥浆,加强钢管周边的围岩。
在浅埋的情况下,地表有建(构)筑物存在时,为把隧道开挖的影响限制在最小限度内,要尽量防止围岩的松弛,采用管棚方法是一种有效的支护方法。
超前锚杆支护的参数因应用场景和目的不同而有所差异。
在隧道工程中,常见的超前锚杆支护参数如下:
1. 直径:一般为20mm~30mm。
2. 长度:一般为
3.0m~5.0m。
3. 间距:一般为0.3m~0.5m。
4. 外插角:一般为10°~15°。
5. 材料:一般采用普通砂浆锚杆,特殊情况下可采用药包锚杆或迈式锚杆。
此外,超前小导管注浆是在隧道开挖掌子面上,沿设计开挖轮廓线以外0.2m~0.3m,钻孔安装小的钢花管,然后进行高压注浆加固,等浆液达到一定强度后再进行开挖。
其参数包括:小导管的直径φ=40mm~60mm;长度1=3.0m~5.0m;间距d=0.3m~1.0m。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业工程师。
浅谈煤矿掘进工作面超前支护技术摘要:本文掘进顶板事故的主要特点、巷道围岩松动圈的形成机理、超前支护的特点等,分析了煤矿掘进工作面顶板支护技术。
关键词:煤矿掘进工作面;顶板;超前支护引言:煤矿普掘工作面的顶板支护中,运用超前支护(临时和前探支护),以对顶板形成初撑力。
该环节很重要,对巷道的永久支护和服务年限都起着决定性的作用。
根据物体受力平衡原理可知,物体在任何时刻都处于平衡状态(有动态平衡和静态平衡),而理想状态下的受力是六面的相对平衡,岩石的受力结构在受到外力破坏时则更复杂。
因此,在掘进工作面,研究原岩石应力受破坏后立即给一个初撑力,使之保持平衡很必要。
该理论也的确能支持巷道的有效支护。
1.掘进顶板事故的主要特点分析煤矿掘进冒顶事故占总量的相当一部分。
其主要特点为:①大多数都是岩块、煤块掉落或薄层岩层脱落所造成的,而极个别的为大范围冒顶事故。
该事故通常是巷道上部有采空区、老巷、大煤柱或处于地质构造区域,或放炮崩倒多架棚子和临时支柱所造成的结果。
②空顶作业冒顶事故占掘进冒顶事故的比例在85%左右。
③因掘进头顶板悬露面积小,顶板在端面和巷道两侧受到原岩体的支承和约束,因此冒顶事故一般还无预兆。
即使掘进时破坏了原岩体的平衡,但在建立新的平衡过程中并不能引起上覆岩层的大量移动、变形和破坏等,事故前也就无明显预兆。
④事故在敲帮问顶时常会发生。
有时新悬露的顶板有活石或伞檐,经多次处理不能落下,过一段时间突然掉落,进而造成了事故。
2.巷道围岩松动圈的形成机理掘进面放炮后的围岩周边中形成了松动圈(即破裂松动区),这是围岩固有的物理状态,实质上就是围岩被破坏后压力重新分布的现象。
该松动圈从理论上可划分为:①小松动圈(0~0.4m);②中松动圈(>0.4m);③大松动圈(>1.5m)。
而每一个松动圈又分为3个小区即:破碎区、裂隙区、和振动区(可忽略)。
原岩受到开掘后(放炮后的瞬间),其周围的应力开始重新分布,而新形成的小松动圈也在变化,即随着时间的变化而变化,若不迅速的给顶板一个初撑力维持岩石的原平衡状态,新形成的小松动圈会逐渐变成中松动圈,大松动圈,以至于发生完全垮落现象。
超前锚杆工艺细则编制:复核:审核:二0 年月日目录1.工程概况 (1)2.端锚注浆方案 (1)2.1.砂浆锚杆施工工艺 (1)2.2.施工方法 (2)3.砂浆锚杆注意事项 (3)4.安全保证措施 (3)5.质量保证措施 (4)6.环境保护措施 (4)7.职业健康安全保障措施 (5)7.1组织管理措施 (5)7.2保障措施 (5)8.验收要求 (5)超前锚杆施工工艺细则1.工程概况本管段主线隧道多为浅埋大断面隧道,围岩主要为Ⅲ级至Ⅵ级,地质情况不是很好。
结合工程实际,考虑便于施工、低成本等,确保锚杆施作质量,充分发挥其作用,以保证施工安全。
确定锚杆施作的方案:锚杆眼成孔采用液压凿岩台车成孔,位置及方向按设计要求。
2.端锚注浆方案端锚注浆是在锚杆孔成孔后,在锚杆底端部采用化学药包将锚杆进行锚固后,再放入注浆管及排气管,封堵锚杆端头,再进行有压注浆。
其特点是端部化学药包内含两种密封的化学浆液,施工时利用外力将密封层破坏后两种浆液反生化学反应,迅速将锚杆预锚固,可以对锚杆体系施加一定的预应力。
其锚杆示意图如图2.1所示:如图2.1 锚杆示意图2.1.砂浆锚杆施工工艺洞身开挖Ⅲ级围岩超前支护采用早强水泥砂浆锚杆,其工艺流程为:钻孔→清孔→注入砂浆→插入杆体。
如下图2.2所示图2.2 砂浆锚杆施工工艺流程图2.2.施工方法2.2.1.准备:凿岩台车就位,并接好供电、供水管线。
2.2.2.测量布眼:根据锚杆设计间距及围岩层理、节理分布实际情况,用油漆标出眼位。
布眼时对层理及节理发育部位,需加密布设。
2.2.3.钻孔:先采用风钻按设计要求钻孔或用二臂液压钻孔台车钻孔,钻孔时钻杆垂于岩面或层理面,钻孔直径比锚杆直径大15mm,用风钻顶入,顶入长度不小于锚杆长度95%,锚杆尾端焊接于格栅钢支撑上,以增强共同支护作用。
2.2.4.清孔及检查:用高压风吹净孔中石屑及细小石块,利于浆液与岩壁充分接触,并检查孔深。
2.2.5.锚杆加工:锚杆采用Ⅱ级Φ25螺纹钢,按设计尺寸下料,将外露端头20cm范围内攻丝,其丝口深度和成型后直径与锚杆端头垫板匹配。
隧洞掘进超前支护技术解析【摘要】为克服不良地质条件对隧洞掘进施工的不利影响,在某些不良地质段施工时大多数采用超前支护技术,对于加固隧洞稳定性、增强隧洞施工的安全性以及减少隧洞开挖造成的经济损失,均发挥着重要的作用。
从不良地质条件下隧洞开挖对围岩稳定的影响出发,分析隧洞掘进超前支护原理及施工工艺,进而为设计出科学合理的支护方案奠定良好的基础。
【关键词】隧洞;不良地质条件;超前支护;技术分析1 前言隧洞掘进时矿山、交通工程建设过程中的重要施工内容,占据着非常重要的地位。
一般来说,在隧洞选址过程中,选择地质构造简单、水文条件良好以及岩体稳定的区域,尽量避开不良地质段。
然而在实际施工过程中,随着工程建设活动的大量推进,不良地质区域逐渐成为常见地形,无法避免。
基于此,为保障隧道施工的安全、顺利进行,在隧洞开挖之前对地质岩体进行预支护,成为当前隧洞工程普遍应用的施工技术,这种技术被称为超前支护技术,在隧洞掘进中发挥着重要的作用。
2 不良地质条件下隧洞开挖对围岩稳定的影响所谓不良地质,主要指岩体松散、软弱破碎、膨胀、多水亦或高地应力地区。
一旦隧洞掘进过程遇到这些不良地段,开挖施工将面临着极大地安全隐患,因而需要对开挖过程中的围岩性能进行分析,为隧洞开挖工程提供理论支撑。
岩体具有非线性特质,也就是说,当洞室开挖之后,围岩的物理、力学性质都会发生非线性和不可逆的变化。
当前,影响围岩稳定性的因素多种多样,一般分为岩体的地质结构、特性、地应力以及人为因素等。
首先,在围岩结构较坚硬的地段,其岩体分布特点、结构断面、强度和变形特性是影响其稳定性的最主要因素。
例如,当隧洞掘进过程中遇到断层破碎带,其稳定性更差,也通常作为工程问题来考量。
而对于岩体比较软弱的地段,则影响其稳定性的主要因素为岩体本身的强度特性与变形能力。
此外,岩体的力学性质与强度也对地层的压力性质与稳定性造成了一定的影响。
其次,地应力是指天然形成的岩体在工程开挖之前便已经具有的应力,因而在高地应力地区开挖过程中,如果不加以注意,将会出现岩爆等问题。