2.4一元一次不等式(学案)
- 格式:doc
- 大小:101.50 KB
- 文档页数:3
2.4 一元一次不等式(二)一、目标确定的依据1、课程标准的相关要求能解数字系数的一元二次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
2、教材分析本节课教材介绍了一元一次不等式的概念,一元一次不等式的求解以及在数轴表示一元一次不等式的解集。
从知识结构上讲它是在学习了一元一次方程,不等式的基本性质以及不等式的解集的基础上学习的。
第一,它是沟通一元一次方程的重要桥梁,是联系一次函数的重要纽带。
第二,它是后面顺利学习一元一次不等式组有关内容的必备知识基础。
另外,前面学生在总结不等式的基本性质时习得的经验,在这里有了一个尝试的机会。
这对发展学生类比、归纳、总结的能力有很大的帮助。
3、学情分析在本节课中学生已经具备获取新概念的知识基础和能力基础,但是学生对一元一次不等式的认识是陌生的、不成系统的。
学生具备归纳、总结的基础,但是部分学生缺乏运用类比法的能力,学生会解决一些单个的问题但是部分学生不善于联系的解决问题。
另外从学生心理特点上讲,初中生乐于探索,富于幻想。
但是老师平淡的解释与书本现成的结论不能满足他们积极探求的心理。
所以真正能够吸引学生的学习方式还是在于探求在于主动获取。
二、学习目标1、能利用一元一次不等式解决一些简单的实际问题;2、通过独立思考,提高用数学知识解决实际问题的能力。
三、评价任务1、用一元一次不等式解决实际问题。
2、能独立解决简单的一元一次不等式应用题。
四、教学过程五、教学反思我们在前面解不等式所作的变形都符合不等式的同解原理(特别要注意不等式两边都乘以或除以同一个负数后,改变不等号的方向),这就保证最后得出的解集就是原不等式的解集。
一元一次不等式复习学案一、学习目标1、归纳本章学过的知识,沟通本章与前面各章有关知识的联系,以便系统的了解本章有关概念,正确掌握不等式的性质,熟练地解一元一次不等式和一元一次不等式组,并会把解集表示在数轴上。
2、学会用数轴直观地得到一元一次不等式(组)的解,并会分析实际问题中量与量之间的关系,并抽象出不等式(组),利用得到的不等式(组)解决实际问题。
重点:一元一次不等式解法、性质和不等式(组)的应用。
难点:不等式解集、性质和应用不等式(组)解决实际问题,特别是实际问题中的列不等式(组)求解是本章知识的关键二、复习导学回顾本章内容,梳理知识点,理解下面知识结构图:知识树复习课本完成以下内容1、不等式的定义:常用不等号有:针对性练习:判断下列式子哪些是不等式?① 3>-2,② 2x ≤1,③ 2x-1,④ s=vt ,⑤ 2m <8x-3, ⑥ x 1-2>-4x ,⑦ 3x ≠8,⑧ x 2+4>0,⑨x2+3>0. 2、不等式的基本性质:(口答)① , ② , ③ 。
针对性练习:(1)用最确切的不等号填空:① 若3<x ,则x 3;② 若-x <0,则0 x+2; ③ 若-2a ≥8,则a -4;④ 若x >y ,则m 2x m 2y 。
(2)若关于x 的一元一次方程4x-2m+1=5x-8的解是负数,则m 的取值范围是 。
(3)如果m <n <0,则下面结论中错误的是( ) A 、m-9<n-9;B 、-m >-n ;C 、n1>m 1;D 、nm>1. 3、不等式的解和不等式解集的定义:(口答)例:求不等式中字母的取值。
关于不等式-2x+a ≥2的解集如图所示,a 的值是( ) A 、0;B 、2;C 、-2;D 、-4. 此处画数轴4、一元一次不等式的定义和解法,及不等式的特殊解。
(口答)不等式的解集在数轴上的表示方法有以下几种情况:例1、解不等式,并把解集在数轴上表示出来。
21x-313x≤1.例2、求不等式3(x-1)≥5(x-3)+6的正整数解。
【学练优】⼋年级数学下册2.4⼀元⼀次不等式的应⽤(第2课时)教案(新版)北师⼤版⼀元⼀次不等式的应⽤1.会在实际问题中寻找数量关系列⼀元⼀次不等式并求解;2.能够列⼀元⼀次不等式解决实际问题.(重点,难点)⼀、情境导⼊如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?⼆、合作探究探究点:⼀元⼀次不等式的应⽤【类型⼀】商品销售问题某商品的进价是120元,标价为180元,但销量较⼩.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打⼏折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.⽅法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型⼆】竞赛积分问题某次知识竞赛共有25道题,答对⼀道得4分,答错或不答都扣2分.⼩明得分要超过80分,他⾄少要答对多少道题?解析:设⼩明答对x道题,则答错或不答的题⽬为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设⼩明答对x道题,则他答错或不答的题⽬为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数⽽且不能超过25,所以⼩明⾄少要答对22道题.答:⼩明⾄少要答对22道题.⽅法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“⾄多”“⾄少”等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】安全问题采⽯场爆破时,点燃导⽕线后⼯⼈要在爆破前转移到400⽶外的安全区域.导⽕线燃烧速度是每秒1厘⽶,⼯⼈转移的速度是每秒5⽶,导⽕线⾄少要多少⽶?解析:根据时间列不等式,导⽕线燃烧时间>⼯⼈要在爆破前转移到400⽶外的安全区域时间.解:设导⽕线的长度需要x⽶,1厘⽶/秒=0.01⽶/秒,由题意得x0.01>4005,解得x>0.8.答:导⽕线⾄少要0.8⽶.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】分段计费问题⼩明家每⽉⽔费都不少于15元,⾃来⽔公司的收费标准如下:若每户每⽉⽤⽔不超过5⽴⽅⽶,则每⽴⽅⽶收费1.8元;若每户每⽉⽤⽔超过5⽴⽅⽶,则超出部分每⽴⽅⽶收费2元,⼩明家每⽉⽤⽔量⾄少是多少?解析:当每⽉⽤⽔5⽴⽅⽶时,花费5×1.8=9元,则可知⼩明家每⽉⽤⽔超过5⽴⽅⽶.设每⽉⽤⽔x⽴⽅⽶,则超出(x-5)⽴⽅⽶,根据题意超出部分每⽴⽅⽶收费2元,列⼀元⼀次不等式求解即可.解:设⼩明家每⽉⽤⽔x⽴⽅⽶.∵5×1.8=9<15,∴⼩明家每⽉⽤⽔超过5⽴⽅⽶.则超出(x-5)⽴⽅⽶,按每⽴⽅⽶2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:⼩明家每⽉⽤⽔量⾄少是8⽴⽅⽶.⽅法总结:分段计费问题中的费⽤⼀般包括两个部分:基本部分的费⽤和超出部分的费⽤.根据费⽤之间的关系建⽴不等式求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型五】调配问题有10名菜农,每⼈可种甲种蔬菜3亩或⼄种蔬菜2亩,已知甲种蔬菜每亩可收⼊0.5万元,⼄种蔬菜每亩可收⼊0.8万元,要使总收⼊不低于15.6万元,则最多只能安排多少⼈种甲种蔬菜?解析:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.甲种蔬菜有3x亩,⼄种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4⼈种甲种蔬菜.⽅法总结:调配问题中,各项⼯作的⼈数之和等于总⼈数.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型六】⽅案决策问题为了保护环境,某企业决定购买10台污⽔处理设备.现有A、B两种型号的设备,其中每台的价格、⽉处理污⽔量及年消耗费如下表.经预算,该企业购买设备的资⾦不⾼于105万元.(1)请你设计该企业有⼏种购买⽅案;(2)若企业每⽉产⽣的污⽔量为2040吨,为了节约资⾦,应选择哪种购买⽅案.解析:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳⽅案.解:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x 取⾮负整数,∴x可取0,1,2,有三种购买⽅案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资⾦为12×1+10×9=102(万元);当x=2时,购买资⾦为12×2+10×8=104(万元).答:为了节约资⾦,应选购A型1台,B型9台.⽅法总结:此题将现实⽣活中的事件与数学思想联系起来,属于最优化问题,在确定最优⽅案时,应把⼏种情况进⾏⽐较.变式训练:见《学练优》本课时练习“课后列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引⼊,激发学⽣的学习兴趣,让学⽣积极参与,讲练结合,引导学⽣找不等关系列不等式.在教学过程中,可通过类⽐列⼀元⼀次⽅程解决实际问题的⽅法来学习,让学⽣认识到列⽅程与列不等式的区别与联系.。
《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
北师大版数学八年级下册《2.4 一元一次不等式(第2课时)》教学设计步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.特别提醒学生注意:在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.2.解一元一次不等式,并把解集在数轴上表示出来.学生自主完成:(答案见课件)3.一元一次方程的应用某种商品进价为200元,标价300元出售,折价销售的利润率为5%,问此商品是按几折销售的?学生利用学过的知识自主完成.提出问题:回忆列一元一次方程解应用题的一般步骤?学生回忆解答.提出问题:类比用一元一次方程解应用题,如何用一元一次不等式解应用题呢?(引出本课课题)二、合作学习,自主探究1.做一做:某种商品进价为200元,标价 300 元出售,商场规定可以打折销售,但其利润率不能少于5%. 请你帮助售货员计算一下,此种商品可以按几折销售?提出问题:1.本题中已知什么?求什么?2.本题中的等量关系和不等关系分别是什么?学生讨论归纳如下:①已知进价、标价、利润,求商品可以按几折销售.②等量数量:售价-进价=利润,不等关系:利润≥5%.根据分析,列不等式解题如下:解:设商品可按x折销售,根据题意,得300×-200≥200×5%解不等式,得 30x-200≥10即:x≥7答:此种商品可以按7折销售.2.例题讲解例题:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?问题(1)本题已知的数量关系有哪些?要求的是什么?问题(2)找出题目中的不等关系和表示不等关系的关键词;问题(3)根据确定的不等关系设未知数,列出不等式;问题(4)不等式的解集与题目的解有什么关系.讨论结果:略.解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85.解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22道、23道、24道或25道题提出问题:根据以上两题的解题过程,你能总结出列不等式解应用题的一般步骤是怎样的吗?则剩余路程可表示为_____.根据以上各量之间的关系可列式_________________.4)他此后平均每天至少要行____千米.2.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元,如果她钢笔和笔记本共买了8件,每一种至少买一件,则她有多少种购买方案?3.我班几个同学合影留念,每人交0.70元.已知一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱尽量用掉的前提下,这张相片上的同学最少有几人?四、本课小结主要掌握解一元一次不等式应用题的步骤.。
一元一次不等式复习学案·第一课时考点1 考查(一元一次)不等式定义概括:用不等号(<>≤≥≠、、、、)联接起来表示不等关系的式子,叫做不等式。
例1.用不等式表示:⑴ a 与1的和是正数; ⑵ x 的2倍与y 的3倍的差是非负数;⑶ x 的2倍与1的和大于—1; ⑷a 的一半与4的差的绝对值不小于a.只含有 未知数,且含未知数的式子是 ,未知数的次数是 。
像这样的不等式叫做一元一次不等式(linear inequality with one unknown )。
例2.下列不等式是一元一次不等式的是(1)2x -2.5≥15; (2)5+23x >240 (3)x <-4; (4)x1>1 ⑸41x +≤y例3.已知13222>-+a x a 是关于x 的一元一次不等式,求a 的值,并解出这个不等式。
考点2 考查不等式解集一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.在数轴上表示不等式(组)的解集例3.在数轴上表示下列解集(1) X ≤-2 (2)x ≥0 (3)x> -121 (4)-3<x ≤2例4.不等式组 ⎩⎨⎧>+≤0312x x 的解在数轴上可表示为( )(2002杭州市)根据数轴求不等式(组)的解集例5.如图,表示了某个不等式的解集,该解集中说含的自然数解的个数为 (2004 乌鲁木齐)例6.一个不等式的解集如图所示,则这个不等式的正 整数解是 (2005 宁德市)考查不等式解集求参数的值(选用)32->-m x示,则m 的值为 (2002常州市)例8.已知关于x 的不等式组⎩⎨⎧>--≥-0125a x a 无解,则a 的取值范围是 。
(2003 湖北)不等式解集的同解问题例9.若关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a = (2004 重庆)考点3 考查不等式性质不等式的性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。