1
3 1
3
(2+x)
×2
3
3
x
1
22 Δ+2(Δ)2 +3(Δ)3
Δ→0
=
Δ
1
= lim [4+2Δx+3(Δx)2]=4,
Δ→0
1
∴曲线 y=3x3 在点 P 处切线的斜率为 4.
1
8
(2)由曲线 y=3x3 的切线过点 P 2, 3 ,斜率为
8
y- =4(x-2),即 12x-3y-16=0.
易错分析求切线方程时,一般先判断该点是否在曲线上,本题中求
过点P的切线方程,且点P不在曲线上,所以求出切点坐标是解决此
分析因为线段OA是固定的,点B在曲线段OA上运动,当点B到OA的
距离最大时,△AOB面积最大,要使点B到OA的距离最大,需要过点B
作平行于OA的切线,进而求得点B坐标,再求面积.
-18-
§2 导数的概念及其几何意义
探究一
探究二
探究三
首页
自主预习
探究学习
探究学习
当堂检测
思维辨析
解:由 f(x)=√,得 f(4)=2,∴A(4,2).
两条切线与 x 轴围成的三角形如图所示,所以
3
所求三角形的面积为 .
4
1
S=2×1×
1
2- 2
=
3
,即
4
-23-
§2 导数的概念及其几何意义探究一Fra bibliotek探究二
探究三
首页
自主预习
探究学习
探究学习
当堂检测
思维辨析
求切线方程时,忽略“过”与“在”的差异
【典例】 求曲线y=2x2-7过点P(3,9)的切线方程.