高一数学必修4第一章第一节导学案
- 格式:doc
- 大小:221.50 KB
- 文档页数:5
任意角高中数学1.1.1任意角导学案新人教A版必修4一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的与重合。
如果α是零角,那么α= 。
问题2、问题3、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和x轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。
问题4、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o(3) 855o(4) -510o问题6、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。
把与-32o角终边相同的所有角都表示为 ,所有与角α 终边相同的角,连同角α 在内可构成集合为 .。
即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
例1. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)︒480; (2)︒-760; (3)03932'︒.变式练习 1、 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 º (2)—54 º18′ (3)395º 8 ′ (4)—1190º 30′2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720oβ≤<360o 的元素写出来:(1)1303o 18, (2)--225o问题8、(1)写出终边在x 轴上角的集合 (2) 写出终边在y 轴上角的集合变式练习 写出终边在直线y =x 上角的集合s,并把s 中适合不等式-360≤β<720o 元素β写出来。
1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。
高中必修4导学案数学一、函数1.1 函数的概念在数学中,函数是一种特殊的关系,它将一个或多个自变量映射到唯一的因变量上。
函数通常用f(x)或者y来表示,其中x为自变量,y 为因变量。
1.2 函数的图象函数的图象是自变量与因变量之间的对应关系,在直角坐标系中通常用曲线或折线表示。
通过函数的图象可以直观地了解函数的性质和规律。
1.3 函数的性质函数的性质包括定义域、值域、奇偶性、周期性等,这些性质对于研究函数的特点和行为至关重要。
二、指数与对数2.1 指数函数指数函数是一种以自然常数e为底的函数,其特点是随着自变量的增大,函数值呈指数增长或指数衰减的规律。
2.2 对数函数对数函数是指数函数的逆运算,以对数底为底的函数。
对数函数可以帮助我们解决指数方程和指数不等式等问题。
2.3 指数对数的性质指数对数具有一系列重要的性质,如对数的底可以是任意正数,指数对数的运算法则等,这些性质对于深入理解指数对数函数至关重要。
三、三角函数3.1 基本概念三角函数包括正弦函数、余弦函数、正切函数等,它们是角度的三角函数关系,描述了直角三角形中角度和边长之间的关系。
3.2 三角函数的性质三角函数具有周期性、奇偶性等性质,这些性质在解三角方程、三角不等式等问题时起到重要作用。
3.3 三角函数的应用三角函数在物理、工程、地理等领域有着广泛的应用,如波动方程、电路分析、地理测量等,它们帮助我们更好地理解和解决实际问题。
四、数列与数学归纳法4.1 数列的概念数列是按照一定规律排列的一组数,其中每一个数称为数列的项,数列是研究数学规律和数学性质的重要工具。
4.2 数列的性质数列有等差数列、等比数列等不同类型,每种数列都有其特定的性质和规律,通过对数列的性质研究可以更深入地理解数学知识。
4.3 数学归纳法数学归纳法是一种证明数学命题成立的方法,通过证明第一个命题为真,然后利用归纳假设证明下一个命题也为真,从而证明所有命题成立。
综上所述,高中必修4导学案数学涵盖了函数、指数对数、三角函数、数列和数学归纳法等内容,这些知识对于学生打下数学基础,培养逻辑思维和数学推理能力具有重要意义。
数学必修4导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第一章 三角函数 1.1任意角和弧度制 1.1.1任意角学习目标:(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义; (3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法; 学习重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示. 学习过程思考:你的手表慢了5分钟,你是怎样将它校准的假如你的手表快了1.25小时,你应当如何将它校准当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思3考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题又该如何区分和表示这些角呢如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
课题:角的概念的推广第 一 章 第 1 节 第 1 课时 【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
【学习重点】角的概念的推广。
【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
【学习方法】阅读,讨论,练习 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果)二、小组探究解疑(小组合作学习新知,讨论解疑) 1.角的概念的推广: 2.角的加减法运算: 3.终边相同的角的集合: 4.象限角(轴上角):三、反馈矫正点拨(将难点问题集中呈现,教师点拨)1.(1)分别写出终边在x 正半轴和负半轴,y 正半轴和负半轴,x 轴和y 轴上的角的集合。
(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
2.在直角坐标系中,判断下列语句的真假: (1)第一象限的角一定是锐角。
(2)终边相同的角一定相等。
(3)相等的角终边一定相同。
(4)小于90°的角一定是锐角。
(5)象限角为钝角的终边一定在第二象限。
(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
3.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限角: (1)-150° (2)650° (3)-950°15′4.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一周到达OC 位置,求∠AOC 的大小四、强化巩固练习(通过精选习题训练巩固新知) 1.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角α2的终边又分别在哪呢(你能总结出一点规律吗)2.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋转了多大的角度呢3.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________.(2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________.五、反思总结提升(绘制完善思维导图总结本课内容)【课后作业】《阳光课堂》对应练习(一)课题:弧度制和弧度制与角度制的换算第 一 章 第 1 节 第 2 课时【学习目标】1.了解弧度的意义。
高一数学必修4第一章导学案课题:1.1.1任意角一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学1、角的定义:___________________________;2、角的概念的推广:___________________________;3、正角___________________________; 负角 ___________________________; 零角概念___________________________.4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.四、课堂练习(1)教材6P 第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍. 五、自主小结 六、当堂检测1.设第一象限的角}=锐角},的角} 小于{G {F 90{o==E ,,那么有().A .B .C .() D .2.用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2);(3).3.解:(1)∵∴与 角终边相同的角是角,它是第三象限的角;(2)∵∴与 终边相同的角是,它是第四象限的角;(3)所以与 角终边相同的角是 ,它是第二象限角.课后练习与提高1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
课题:角的概念的推广12第一章第 1 节第 1 3课时【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
45【学习重点】角的概念的推广。
6【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
7【学习方法】阅读,讨论,练习8【学习过程】9一、预习成果展示(学生以思维导图形式展示预习成果)1011121314二、小组探究解疑(小组合作学习新知,讨论解疑)15161.角的概念的推广:172.角的加减法运算:183.终边相同的角的集合:194.象限角(轴上角):20三、反馈矫正点拨(将难点问题集中呈现,教师点拨)211.(1)分别写出终边在x正半轴和负半轴,y正半轴和负半轴,x轴和y轴上的角的集合。
22232425(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
262728292.在直角坐标系中,判断下列语句的真假: 30(1)第一象限的角一定是锐角。
31(2)终边相同的角一定相等。
32(3)相等的角终边一定相同。
33(4)小于90°的角一定是锐角。
34(5)象限角为钝角的终边一定在第二象限。
35(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
36373.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几38象限角: 39(1)-150° (2)650° (3)-950°15′ 40414243444.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一45周到达OC 位置,求∠AOC 的大小? 464748495051四、 强化巩固练习(通过精选习题训练巩固新知) 521.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角?α2的53终边又分别在哪呢?(你能总结出一点规律吗) 54555657582.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋59转了多大的角度呢? 606162633.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________. 6465(2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________. 6667五、 反思总结提升(绘制完善思维导图总结本课内容) 687071727374【课后作业】75《阳光课堂》对应练习(一)767778课题:弧度制和弧度制与角度制的换算79第一章第 1 节第 2 80课时81【学习目标】1.了解弧度的意义。
人教版-高一数学必修4全套导学案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版-高一数学必修4全套导学案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版-高一数学必修4全套导学案(word版可编辑修改)的全部内容。
第二章平面向量2.1 向量的概念及表示【学习目标】1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量; 2。
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别;3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.【学习重难点】重点:平行向量的概念和向量的几何表示;难点:区分平行向量、相等向量和共线向量;【自主学习】1。
向量的定义:__________________________________________________________;2。
向量的表示:(1)图形表示:(2)字母表示:3.向量的相关概念:(1)向量的长度(向量的模):_______________________记作:______________(2)零向量:___________________,记作:_____________________(3)单位向量:________________________________(4)平行向量:________________________________(5)共线向量:________________________________(6)相等向量与相反向量:_________________________思考:(1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____(2)平行向量与共线向量的关系:____________________________________________(3)向量“共线”与几何中“共线”有何区别:__________________________________【典型例题】例1。
11.3.1正弦函数的图象和性质(1)【学习目标】1. 会用单位圆中的正弦线画正弦函数的图象;2. 会用五点法画函数y = sinx ,x ∈[0,2π]的图象。
【重点】用五点法绘制正弦函数图象。
【难点】运用几何法画正弦函数图象。
】1.正弦函数:___________________________。
2.x y sin =的图象叫做__________________。
3.作图几何法的作图步骤:(1)x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从圆与 x 轴交点 A 起把圆分成 12 等份;(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、 、2π的正弦线;(4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合;(6)用光滑曲线把这些正弦线的终点连结起来。
五点法:在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就得到这个函数的简图。
我们称这种方法为“五点法”,这五个关键点是:___________________________,描出这五个点后,函数y=sinx ,x ∈[0,2π]的图象的形状就基本上确定了。
4.性质:例1.用“五点法”作函数y 1sin x,x [0,2]=+∈π的简图。
(1)列表(2)描点作图思考:如何得到y= -sinx ,y=sin x-4π(),y=sin x+2π()的图象? [变式1]用“五点法”作函数y=3sin 2x+3π()的简图21、用五点法作2sin 2y x =的图象,首先应描的五点的横坐标可以是( )A.30,,,,222ππππ B. 30,,,,424ππππC. 0,,2,3,4ππππD.20,,,,6323ππππ2、1sin ,2.1sin ,5.1sin 的大小关系是( ) A .5.1sin 2.1sin 1sin B .2.1sin 5.1sin 1sin C .1sin 2.1sin 5.1sin D.5.1sin 1sin 2.1sin3、函数y =|sin x |的最小正周期是( )A .2πB .πC .2πD .4π4、函数y =x sin x 的部分图象是()*5、已知函数5y=2sin x,x ,22ππ⎡⎤∈⎢⎥⎣⎦的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积是( )A .4B .8C .4πD .2π *6、方程5cos x-=lg x 2π()的解的个数是( ) A .1 B .2 C .3 D .4 *7、y=sinx-sin x 的值域是( )A .[]-1,0B .[]0,1C .[]-1,1D .[]-2,08、在[0,2π]上sin x ≥12的x 的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,π6B .⎣⎢⎡⎦⎥⎤π6,5π6C .⎣⎢⎡⎦⎥⎤π6,23πD .⎣⎢⎡⎦⎥⎤56π,π 9、若aa x --=432sin ,那么a 的取值范围是( ) A .[)+∞,4B .(]1,-∞-C .(]⎪⎭⎫⎢⎣⎡+∞-∞-,371,D .⎥⎦⎤⎢⎣⎡-37,110、函数⎥⎦⎤⎢⎣⎡-∈=32,6,sin ππx x y 的值域是( ) A .[]1,1- B .⎥⎦⎤⎢⎣⎡-1,21 C .⎥⎦⎤⎢⎣⎡-23,21 D .⎥⎦⎤⎢⎣⎡23,2111求下列函数的定义域:225sin x x y -+=12、求下列函数的值域:⎥⎦⎤⎢⎣⎡∈+-=43,3,1sin sin 2ππx x x y。
1 §1.2.1任意角的三角函数(1)学习目标1.掌握任意角三角函数(正弦、余弦、正切)的定义;2. 掌握三角函数的值在各象限的符号。
高考要求:B 级 课前准备(预习教材P11 ~ P12,完成以下内容并找出疑惑之处) 一、知识梳理、双基再现1、在直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),那么:⑴ 叫做α的正弦,记作 , 即 . ⑵ 叫做α的余弦,记作 ,即 . ⑶ 叫做α的正切,记作 ,即 .当α= 时, α的终边在y 轴上,这时点P 的横坐标等于 ,所以 无意义.除此之外,对于确定的角α,上面三个值都是 .所以, 正弦、余弦、正切都是以 为自变量,以 为函数值的函数,我们将它们统称为 .二、小试身手、轻松过关1.已知点P (ααcos ,tan )在第三象限,则角α在第 象限。
2.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = .3.已知角θ的终边经过点(-3,4),求角θ的正弦、余弦和正切值。
一、【基础训练、锋芒初显】1.若θ是第三象限角,且02cos<θ,则2θ是第 象限角。
2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______.3.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .二、【举一反三、能力拓展】1.若角α的终边落在直线y x 815=上,求ααtan sec log 2-2.(1) 已知角α的终边经过点P(4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin α+cos α的值.§1.2.1任意角的三角函数(2)学习目标1.会用角α的正弦线、余弦线、正切线分别表示任意角α的正弦、余弦、正切的函数值;2. 掌握正弦、余弦、正切函数的定义认识其定义域。
高一数学必修4第一章第一节导学案
课题:1.1.1任意角
一、学习目标
(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;
(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;
教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学
1、角的定义:___________________________;
2、角的概念的推广:___________________________;
3、正角___________________________; 负角 ___________________________; 零角概念___________________________.
4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究
例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒
︒
-是指0360β︒︒
≤<)
例2.写出终边在y 轴上的角的集合.
例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒
-≤
720︒<的元素β写出来.
四、课堂练习
(1)教材6P 第3、4、5题.
(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒
的整数倍. 五、自主小结 六、当堂检测
1.设第一象限的角}
=锐角},的角} 小于{G {F 90{o
==E ,
,那么有(
).
A .
B .
C .
(
) D .
2.用集合表示:
(1)各象限的角组成的集合. (2)终边落在
轴右侧的角的集合.
3.在~
间,找出与下列各角终边相同的角,并判定它们是第几象限角
(1) ;(2)
;(3)
.
3.解:(1)∵
∴与 角终边相同的角是
角,它是第三象限的角;
(2)∵
∴与 终边相同的角是
,它是第四象限的角;
(3)
所以与 角终边相同的角是 ,它是第二象限角.
课后练习与提高
1. 若时针走过2小时40分,则分针走过的角是多少?
2. 下列命题正确的是: ( )
(A )终边相同的角一定相等。
(B )第一象限的角都是锐角。
(C )锐角都是第一象限的角。
(D )小于090的角都是锐角。
3. 若a 是第一象限的角,则2
a 是第 象限角。
4.一角为 ,其终边按逆时针方向旋转三周后的角度数为_ _.
5.集合M ={α=k o 90⋅,k ∈Z}中,各角的终边都在( ) A .轴正半轴上, B .轴正半轴上,
C .
轴或 轴上, D . 轴正半轴或 轴正半轴上
6.设
,
C ={α|α= k180o
+45o
,k ∈Z} ,
则相等的角集合为_ _.
参考答案
1. 解:2小时40分=3
8小时,4803
8'180-=⨯-∴
故分针走过的角为480。
2. C
3. 一或三
4.
5. C
6. _B =D ,C =E
课题:1.1.2 弧度制
一、学习目标
1.理解弧度制的意义;
2.能正确的应用弧度与角度之间的换算;
3.记住公式||l
r
α=
(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
教学重点:弧度与角度之间的换算;
教学难点:弧长公式、扇形面积公式的应用。
二、问题导学
(一)1、复习:初中时所学的角度制___________________________; 规定1角方法___________________________;
2、角度制的单位有 __________ ; 是___________________ 进制。
(二)、自学课本第7、8页.通过自学回答以下问题:
1、角的弧度制 :__________________________ 叫做1弧度的角,用符号 表示,读作 。
2、平角、周角的弧度数 ___________________________;
3、 角的弧度与角所在圆的半径、角所对的弧长的关系___________________________;
4、圆的半径为r ,圆弧长为2r 、3r 、
2
r
的弧所对的圆心角分别为 ________________ 5、如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是:
,α的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
例如:当弧长
4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是4||4l r
r r
παπ-=-=-=-
<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角
的度量。
(三)角度与弧度的换算
3602π=rad 180π=rad
180
1π
=
︒rad 0.01745≈rad 1rad =︒)180
(
π
5718'≈
归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是:
(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.
O
A
B
(五)、弧度下的弧长公式和扇形面积公式
弧长公式:||l
r α=⋅
因为||l r α=(其中l 表示α所对的弧长),所以,弧长公式为||l r α=⋅.
扇形面积公式:
说明:以上公式中的α必须为弧度单位. 三、问题探究
例1、把下列各角从度化为弧度:
(1)0252 (2)0/
1115 (3) 030 (4)'3067︒
例2、把下列各角从弧度化为度:
(1)3
5π (2) 3.5 (3) 2 (4)4
π
例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。
四、课堂练习:
1、把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º
2、把下列各角从弧度化为度:(1)
12π (2)—34π (3)10
3π
3、半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角的弧度数。
4、半径变为原来的
1
2
,而弧长不变,则该弧所对的圆心角是原来的 倍。
5、若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积
是 .
6、以原点为圆心,半径为1的圆中,一条弦AB
AB 所对的圆心角α 的弧度数为 . 五、自主小结:
课后练习与提高
1.在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数。
2.直径为20cm 的滑轮,每秒钟旋转45,则滑轮上一点经过5秒钟转过的弧长是多少?
3.选做题
如图,扇形OAB 的面积是2
4cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。
(2) ;R 2
1(1)S 2α=2(1) 1(2) 2
1(3) 2l R
S R S lR αα===。