七年级数学下册(人教版)配套教学学案:5.3.1 第2课时 平行线的性质和判定及其综合运用
- 格式:docx
- 大小:94.47 KB
- 文档页数:7
人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。
本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。
二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。
通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。
2.演示法。
通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。
3.交互式教学法。
在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。
四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。
请用你的观察能力,试着解释一下。
2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。
2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。
2.教师引导学生观察直线和横线的相对位置。
学生回答“这两条直线可能会有什么关系?” 并予以深入探究。
3.教师呈现两条相交的直线的图形。
蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。
学生自主探索得到假设,教师引导得出定义。
5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。
3. 总结1.举例,让学生思考这些性质的应用场景和方法。
2.教师引导学生用不同的方法总结、概括平行性质。
4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。
五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。
教师班长进行作业的检查和评估,判定教学质量和效果。
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系为什么(2)已知,则与有什么关系为什么图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度为什么(2)从,可以知道是多少度为什么(3)从,可以知道是多少度,为什么【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度为什么(2)等于多少度为什么(3)、各等于多少度2.如图10,、、、在一条直线上,.(1)时,、各等于多少度为什么(2)时,、各等于多少度为什么学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗为什么图12(2)是多少度为什么学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.。
人教版七年级数学下册5.3.1 平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明.【学习过程】一、学前准备二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合对顶角的性质,我们可以得到:性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=练习一: 1. 根据右图将下列几何语言补充完整 (1)∵AD ∥ (已知) ∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( )2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等.练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______. C 1 2 3 4 5B A DE D C B A 1A 2A 1B 2B 3B 4B 5B 1C 2C 3C 5C4C(1题) (2题) (3题) 2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°,则∠A=______.3.如图所示,已知AB∥CD,BC∥DE,∠1=120°,则∠2=______.三、当堂反馈1.如图所示,如果AB∥CD,那么().A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8(1题) (2题) (3题) 2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有().A.3个 B.2个 C.5个 D.4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课你有哪些收获?。
全新修订版(学案)七年级数学下册老师的必备资料家长的帮教助手学生的课堂再现人教版(RJ)第2课时平行线的性质和判定及其综合运用学习目标:1•分清平行线的性质和判定.已知平行用性质,要证平行用判定.2. 能够综合运用平行线性质和判定解题.学习重点:平行线性质和判定综合应用学习难点:平行线性质和判定灵活运用学习过程:一、学前准备k预习疑难:_____________________________________________________________________2、填空:①平行线的性质有哪些?②平行线的判定有哪些?二、平行线的性质与判定的区别与联系1、区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行・2、联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定三、应用(-)例仁如图,已知:AD||BC, zAEF二zB,求证:AD||EF O1、分析:(执果索因)从图直观分析,欲证AD\EF,只需z/l+zZI£7h80。
,(由因求果)因为AD^BC,所以"+z企180° ,又zB=zAEF y 所以z/4+z/LE7h80°成立.于是得证2、证明:J AD ||BC (已知)zA+zB 二180°zAEF二zB (已知)zA + zAEF =180°(等量代换)••• ADHEF(____________________ )3、思考:在填写两个依据时要注意什么问题?4、推广:你有其他方法证明这个问题吗?你写出过程。
(二)练一练:1、如图,已知:AB||DE , zABC+zDEF=180°,求证:BC||EF。
2、如图,已知:二z2 ,求证:z3 + z4=180°B-D 3、如图,已知:AB ||CD , MG 平分zAMN ,NH 平分zDNM ,求证:MG||NH OC四、学习体会:1、 本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了咿?人五、自我检测: D --------十K 如图 1,AB||EF,zECD 二zE,则 CD||AB.说理如下:E -------- p因为 zECD 二 zE, 所以 CD||EF( )又 AB||EF, 所以 CD||AB(). ( 1 )2、 下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等•两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④3、 如图,平行光线AB 、DE 照射在平面镜上,经反射得到光线BC 与EF ,已知N 二z2, z3二z4 ,则光线BC 与EF 平行吗?为什么?4、如图,已知:AB||CD , zA 二 zC ,求证:AD||BC O一、拓展延伸1.已知,如图1,zA0B 纸片沿CD 折叠,若O'C||BD,那么O'D 与AC 平行吗?请说明理由.4、如图,已知B 、E 分别是AC 、DF 上的点,z 仁N 2,Z C 二N D.⑴zABD 与zC 相等吗?为什么.(2)zA 与zF 相等吗?请说明理由.5、如图,已知EAB 是直线,AD||BC,AD 平分zEAC,试判定zB 与zC 的大小关系,并说明理由.3、探索发现:如图所示,已知AB 〃CD 分别探索下列四个图形中ZP 与ZA,ZC 的关系,请 你从所得的四个关系中任选一个加以说明.(提示:过点P 做平行线)变式1 :如图所示9已知AB 〃CDZABE=130qZCDE=152。
《5.3.1 平行线的性质》教学设计教材分析:平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。
这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要教学目标:【知识与技能目标】理解平行线的性质;【过程与方法目标】经历平行线性质的探究过程,从中体会研究几何图形的一般方法.【情感态度与价值观目标】通过分组讨论,培养学生合作交流的意识和探索精神;教学重难点:【教学重点】平行线的三个性质.【教学难点】平行线的三个性质和怎样区分性质和判定.课前准备:多媒体:PPT课件、电子白板教学过程:第一课时一、前置诊断,复习旧知师:前面我们探索了两条直线平行的条件,学习了哪些判断两条直线平行的条件?生:(齐答) 1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.师:观察图形,回答下面问题:(多媒体展示)(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠(已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠=180° (已知)所以a∥b()生:口头填空,并回答理由。
【设计意图】平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,并为新课的学习做准备。
活动注意事项:因为学生在应用平行线的性质与条件推理时非常容易混淆,因此在学生回答判定直线平行的三个条件后,又给学生结合图形直观地进行直线平行的条件的推理,加深学生的印象,节约学生复习的时间,提高复习的效果。
二、创设情境引入新课师:想一想:反过来,若改变已知与结论的位置,即已知两条平行线被第三条直线所截,那么所形成的同位角、内错角、同旁内角,有什么关系呢?这就是本节课要学习的平行线的性质。
(板书课题:5.3.1平行线的性质)【设计意图】利用判断与性质中已知与结论的联系,自然引入新课,不仅调动学生的学习积极性,同时为本节课学习的顺利进行做好铺垫。
第五章相交线与平行线..或者说同旁内角互补,,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.一、要点探究探究点:平行线的性质和判定及其综合应用典例精析例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD,你能确定∠B、∠D与∠BED 的大小关系吗?说说课堂探究教学备注配套PPT讲授2.探究点新知讲授(见幻灯片6-16)你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .EDCBA【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E1,∠E2,…,∠En 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?教学备注 配套PPT 讲授3.课堂小结4.当堂检测 (见幻灯片17-21)二、课堂小结平行线的判与性质平行线的判定已知角的关系得平行的关系平行线的性质已知平行的关系得角的关系错误!未指定书签。
1.填空:如图,(1)∠1= 时,AB∥CD;(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°.其中能判断a//b的是( )A. ①②③④ B .①③④C. ①③D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求AEC的度数.请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互教学备注配套PPT讲授4.当堂检测(见幻灯片17-21)补).又∵∠A=100°,∠C=10°(已知),∴∠ = °, ∠ = °.∴∠AC=∠1+2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.1、2019年,文野31那年,买房后第二年,成了人生中最重要的一次转变。
全新修订版教学设计
(学案)
七年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
第2课时平行线的性质和判定及其综合运用学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.
2.能够综合运用平行线性质和判定解题.
学习重点:平行线性质和判定综合应用
学习难点:平行线性质和判定灵活运用
学习过程:
一、学前准备
1、预习疑难:。
2、填空:①平行线的性质有哪些?
②平行线的判定有哪些?
二、平行线的性质与判定的区别与联系
1、区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
2、联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定
三、应用
(一)例1:如图,已知:AD∥BC, ∠AEF=∠B,求证:AD∥EF。
(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°,
(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,
所以∠A+∠AEF=180°成立.于是得证
2、证明:∵ AD ∥BC(已知)
∴ ∠A+∠B=180°()。