高中数学必修4第一章复习总结及典型例题
- 格式:doc
- 大小:307.00 KB
- 文档页数:5
数学必修四第一章知识点总结第一章矩阵与行列式1.矩阵的定义:矩阵是由m∙n个数按照m行n列排列起来的一个数表。
2.矩阵的运算:(1)矩阵的加法:对应位置上的元素进行相加。
(2)矩阵的乘法:满足矩阵乘法规则的两个矩阵相乘,结果矩阵的元素等于第一个矩阵的相应行和第二个矩阵的相应列元素的乘积之和。
(3)数字与矩阵的乘法:数乘矩阵中的每一个元素。
3.矩阵的性质:(1)矩阵的加法满足交换律和结合律。
(2)矩阵的数乘满足结合律和分配律。
4.单位矩阵:n阶单位矩阵是一个n∙n的矩阵,主对角线上元素为1,其他元素为0。
5.方阵和对角阵:(1)方阵是行数和列数相等的矩阵。
(2)主对角线外的元素全为零的方阵是对角阵。
6.转置矩阵:矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
7.矩阵的乘积:(1)若矩阵A的列数等于矩阵B的行数,则可以计算矩阵A与矩阵B 的乘积,得到一个新的矩阵C,其中矩阵C的行数等于矩阵A的行数,列数等于矩阵B的列数。
(2)矩阵乘积的运算性质:结合律,分配律,但一般不满足交换律。
8.克拉默法则:若n元线性方程组的系数矩阵的行列式不等于0,则n元线性方程组有唯一解,且解可以用各个未知量的系数作为分子和系数矩阵的行列式作为通分式的分母来表示。
9.行列式的定义:(1)一阶行列式:行列式的元素就是该元素本身。
(2)二阶行列式:行列式元素按主对角线方向相乘,再减去次对角线方向的元素相乘。
(3)三阶行列式:每个元素与与其所在行行标和列标分别相同、不相同的元素构成的二阶行列式之差相乘,最后再按正负号相加。
(4)多阶行列式:利用拉普拉斯定理进行计算。
10.行列式的性质:(1)行列式的转置等于行列式本身。
(2)若行列式有两行或两列完全相同,则行列式的值等于零。
(3)互换行列式的两行(两列),行列式值不变。
(4)行列式的其中一行(列)的元素都乘以一个数k,等于用数k乘以此行列式的值。
(5)行列式中有两行(两列)元素对应成比例,则行列式的值等于零。
数学必修四第一章知识点总结第一章初等数论与数论方法一、整数研究了整数及其运算性质,引导学生辨识和解决在初中学习过程中遇到的有关整数的复杂问题。
1. 整数的概念整数是正整数、负整数和零的统称。
整数的绝对值是指它离原点的距离,是非负的整数。
2. 整数的四则运算(1)加法运算:正数相加、负数相加应用法则,可以化为正数相加或正负数相减的运算问题来解决。
(2)减法运算:整数减法法则就是整数加法法则的推广。
(3)乘法运算:两个数相乘的积的符号与它们的积的因数的符号有关。
(4)除法运算:零不能作为除数,有理数的除法也要遵循约分原则。
3. 整数的应用整数是在数轴上有序排列的,整数运算也是数轴上大小关系的推算。
在温度、债务、货币、海拔高度、海拔深度等相关实际生活中,需要使用整数。
二、整数的乘方及开方1. 乘方概念以数 a 为底 n 为指数的乘方运算通常记作aⁿ (a ≠ 0, n > 0), 它表示连续相同乘数 a 用 n-1个乘号与自己相乘的乘积。
2. 乘方的运算性质(1)乘方的运算性质: 同底数乘方相乘,指数相加;(2)乘方运算的简便法则:同一底数不同指数相乘可以利用指数运算法则;(3)指数运算法则:①乘方的运算法则:同底数的几个数的乘方, 底数相同, 指数相加;②除法可以转换为乘方;(4)零的乘方等于 1: 0 的任何正整数次幂都等于 1。
3. 开方的概念一个数的平方根就是对应的平方的运算过程,一个数的 n 次方根是对应的 n 次方的运算过程。
4. 定义(1)二次方程的解法:①因式分解法;②公式法;③配方法;(2)含一个未知数的方程;(3)一元二次方程:我国古代代数的发展,以求一元二次方程的解为目标;(4)一次方程:秦九韶二次方程的解法是把一次方程的求根问题化成二次方程的求根问题。
5. 一元二次方程(1)一元二次方程的定义:① 它是一元的;② 它的最高次项是二次项③ 它与一元二次函数有相联系的地方;一元二次方程及根的关系:一元二次方程的单解和两解,它对应的一元二次函数的图象几何方程的根与几何意义的关系;(2)整数系数的一元二次方程;(3)一元二次方程及根的关系;(4)一元二次方程数学题。
高中数学必修四第一章知识点必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些高中数学必修四第一章知识点的学习资料,希望对大家有所帮助。
高一数学必修四知识点总结第一章三角函数正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.第二象限角的集合为k36090k360180,k第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k第一象限角的集合为k360k36090,k3、与角终边相同的角的集合为k360,k4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是l.r1806、弧度制与角度制的换算公式:2360,1,157.3.1807、若扇形的圆心角为为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,111Slrr2.228、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin0,yxy,cos,tanx0.rrx9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin,cos,tan.222211、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin;2sintancossinsintancos,cos.tan12、函数的诱导公式:1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan.3sinsin,coscos,tantan.4sinsin,coscos,tantan.口诀:函数名称不变,符号看象限.5sincos,cossin.6sincos,cossin.2222口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx 的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数ysinx的图象.②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横2坐标不变),得到函数ysinx的图象.14、函数ysinx0,0的性质:①振幅:;②周期:2;③频率:f1;④相位:x;⑤初相:.2函数ysinx,当x-x1时,取得最小值为ymin;当x-x2时,取得值为ymax,则11x2x1x1x2ymaxyminymaxymin22,,2.yASinx,A0,0,T215周期问题2yACosx,A0,0,TyASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T22yACosxb,A0,0,b0,TTyAcotx,A0,0,yAtanx,A0,0,TyAcotx,A0,0,TyAtanx,A0,0,T高一数学必修四线性回归分析知识点线性回归方程设x与y是具有相关关系的两个变量,且相应于n组观测值的n 个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。
练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。
求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。
过去我们研究了0°~360°(00360α≤<)范围的角。
如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。
角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。
必修四 第一章 复习 第一:任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,
弧长l r α=、扇形面积2
1122
s lr r α==,
二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22r x y =+(r>0),那么角α的正弦r y a =
sin 、余弦r
x
a =cos 、正切x
y
a =
tan ,它们都是以角为自变量,以比值为函数值的函数。
三:同角三角函数的关系式与诱导公式: 1.平方关系:2
2sin
cos 1
αα+=
2. 商数关系:
sin tan cos α
αα
=
3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦 余弦
正切
第二、三角函数图象和性质 基础知识:1、三角函数图像和性质
2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:
、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+
周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
基础练习:
1、tan(600)-= . sin 225︒= 。
2、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2.
3、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于
4
、函数y =_____ __ 5、
的结果是 。
6、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π-=的图象-------( ) (A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3
π单位 (D )向右平移个3
π单位
7、已知0tan ,0sin ><θθ,那么θ是 。
8.已知点P (tan α,cos α)在第三象限,则角α的终边在 9、下列函数中,最小正周期为π,且图象关于直线3
π
=x 对称的是( ) A .sin(2)3π=-y x B.sin(2)6π=-y x C.sin(2)6π=+y x D.sin()23
π=+x y 10、下列函数中,周期为π的偶函数是( )
A.cos y x =
B.sin 2y x =
C. tan y x =
D. sin(2)2
y x π
=+
解答题解答题应写出文字说明、演算步骤或证明过程.
第一类型:1、已知角α终边上一点P (-4,3),求)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+的值 2.已知α是第二象限角,sin()tan()
()sin()cos(2)tan()
f πααπαπαπαα---=
+--.
(1)化简()f α; (2)若31sin()2
3
πα-=-,求()f α的值.
3.已知tan 3α=,求下列各式的值: (1)
4sin cos 3sin 5cos αααα
-+ ;(2)
21
2sin cos cos ααα
+.
第二类型: 1.已知函数sin()y A x B ωϕ=++的一部分图象
如右图所示,如果0,0,||2
A π
ωϕ>><,
(1)求此函数的周期及最大值和最小值 (2)求这个函数函数解析式
第三类型:1.已知函数4
5)6
2sin(2
1++=π
x y
(1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程.
(3) 写出y=sinx 图象如何变换到15sin(2)2
6
4
y x π
=++的图象。