第4章 狭义相对论(2)
- 格式:ppt
- 大小:588.00 KB
- 文档页数:15
第4章 狭义相对论一、基本要求1.掌握运动时间延缓和运动长度收缩原理; 2.理解质速关系和质能关系。
二、基本内容(一)本章重点和难点:重点:狭义相对论时空观中运动时间延缓和运动长度收缩。
难点:相对论动力学中质能关系。
(二)知识网络结构图:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧=⎩⎨⎧⎩⎨⎧)(2mc (E )质能关系运动质量变大质速关系相对论动力学运动长度收缩运动时间延缓相对论运动学光速不变原理爱因斯坦相对性原理基本原理(三)容易混淆的概念: 1.静止长度和运动长度静止长度0l ,也称固有长度,即观察者和被测物体在同一参照系所测长度;运动长度l ,即观察者和被测物体不在同一参照系所测长度。
2. 静止时间和运动时间静止时间0τ,也称固有时,即观察者和被测事件在同一参照系所测时间;运动时间τ,即观察者和被测事件不在同一参照系所测时间。
3.总能量、静能量和动能总能量E 由爱因斯坦质能关系式,等于动质量和光速的平方的乘积;静能量0E 等于静质量和光速的平方的乘积;动能k E 即总能量与静能量之差。
(四)主要内容:1.经典力学的相对性原理:一切彼此相对作匀速直线运动的诸惯性系中的力学规律是一样的。
即力学规律的数学形式都是相同的。
2.狭义相对论基本原理:(1)爱因斯坦相对性原理:物理定律在所有惯性参考系内都是等价的。
(2)光速不变原理:在所有惯性系中,光在真空中的速度恒等于c 。
3.洛伦兹变换:若S S 、'分别为两惯性系,S 系相对S '系以v 沿x 轴运动,在0='=t t 时两系重合,则一质点(或一事件)在S 系中的时空坐标(x 、y 、z 、t )与在S '系中的时空坐标(x '、y '、z '、t ')之间的关系为洛伦兹时空变换。
(1)洛伦兹时空变换同一事件在S 系中时空坐标(x 、y 、z 、t )与在S '系中的时空坐标(x '、y '、z '、t ')之间的关系为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧='='--='--='z z y y c v vt x x c v x c v t t 222)(1)(1逆变换为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧'='=-+'=-+=z z y y c v vtx x c v x c v t t 222)(1)(1(2)洛伦兹速度变换某质点相对于S 系速度u ,与相对S '系速度u '之间的关系为:PcE 021c vu v u u x x x--=';221)(1c v u c v u u x y y --=';221)(1c v u cvu u x z z --='逆变换为:21c vu v u u x xx '++'=;221)(1c v u c v u u x y y '+-'=;221)(1c v u c v u u x z z '+-'=4.狭义相对论时空观:(为简化公式,可令:22221,11c v cv -=-=βγ) (1)运动时间延缓公式:2201c v -=ττ其中:0τ为静止时间,也称固有时,即观察者和被测事件在同一参照系所测时间;τ为运动时间,即观察者和被测事件不在同一参照系所测时间。
习 题4-1 一辆高速车以0.8c 的速率运动。
地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,她即刻把自己的钟拨到0'=t 。
行驶了一段距离后,她自己的钟指到6 us 时,驾驶员瞧地面上另一台钟。
问这个钟的读数就是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔与空间间隔各就是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标就是x 1=6×104 m,y 1=z 1=0,t 1=2×10-4 s 与x 2=12×104 m,y 2=z 2=0,t 2=1×10-4 s 。
如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 就是多少?S′ 系测得这两个事件的空间间隔就是多少? 【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆cxu t t 2cxu t ∆=∆⇒ (m/s)105.182⨯-=∆∆=⇒x t c u (m )102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车与山底隧道静止时等长。