高分子材料微观结构
- 格式:doc
- 大小:19.50 KB
- 文档页数:4
高分子材料的化学结合键高分子材料包括聚合物、高分子复合材料、高分子溶液等,是最广泛应用的材料,其各种性能及特殊性性能与其结构、组份、构成有很大关系。
其中,最重要的就是化学结合键。
高分子材料的微观结构和性能主要由分子之间的化学结合键决定。
一、化学结合键的分类根据结合键的类型,可以将高分子材料的结合键分为氢键、疏水键、相互作用力、重力屏障、空间势、Van der Waals互作用力等。
1、氢键:氢键在纤维素、蛋白质等天然高分子材料中很常见,也是高分子材料的主要结合键之一。
氢键在水中会很容易发生,是高分子材料分子间最强的结合键。
氢键的作用机理主要是当里氏静电力、H—H矩阵相互作用、酸—碱作用使分子彼此接近,从而形成特殊的拉力,实现分子稳定性。
2、疏水性键:此类结合键在高分子材料中也很常见,主要作用机理是当分子表面化学基团接近时,氢键受到环境的影响(如水分子的蒸汽压),受到削弱的氢键结合能,使空气中的分子之间形成了疏水性的键,使分子彼此受拉力而紧密结合在一起,形成稳定的高分子结构。
3、相互作用力:相互作用力是高分子材料中主要的结合键,包括立体排斥力、弛豫力和液体团簇等。
当分子靠近立体构型不允许时,分子之间就会形成弦有负载的立体互斥力,使分子彼此排斥而稳定;当分子之间距离比较远时,会形成弛豫力,使分子彼此间保持一定的局部结构;如果分子之间成团的话,就会形成液体团簇,以稳定水溶液的结构。
4、重力屏障键:此键的作用机理是:当高分子材料流动时,分子之间对地心引力的受力,使一个分子往下沉,另一个分子向上升,以产生重力屏障键,使材料结构更稳固。
5、空间势键:此类结合键被称为空间势键,主要是在空间上形成的诱惑效应。
当分子靠近某个原子、分子(如充氮基团)时,由于充氮基团的金属属性而产生一种引力,使分子彼此紧密结合。
二、化学结合键的作用化学结合键是高分子材料的重要结构因素,其在复合材料的微观结构及性能的形成中起着极其重要的作用,几乎可以说高分子材料的所有性能都和化学结合键有关,因为化学结合键决定了高分子材料的分子结构、稳定性及微观物理性质。
材料微观组织的概念及分类材料微观组织是指材料在微观尺度下的内部结构和组织形态,是由晶体、晶界、晶粒、晶格缺陷、孪晶、析出相、晶体取向等组成的。
微观组织的特征与性能之间有着密切的关系,对材料的性能和行为具有重要的影响。
微观组织的分类主要有金属材料、陶瓷材料、高分子材料和复合材料。
金属材料的微观组织特征主要包括晶格结构、晶粒形态、晶界和孪晶。
在金属的微观组织中,晶界是一个非常重要的概念,它是相邻晶粒之间的交界面,对金属材料的力学性能和腐蚀性能有很大的影响。
金属材料的晶粒形态可以有等轴晶粒、柱状晶粒和板状晶粒等不同形态,这些形态的不同会对金属材料的性能产生影响。
此外,金属材料中的孪晶是由于材料在变形或加工过程中产生了错觉而形成的,对材料的塑性变形行为有着重要的影响。
金属材料的微观组织特征对金属材料的热加工、冷加工、固溶处理、时效处理等过程中的材料性能有着重要的影响。
陶瓷材料的微观组织特征主要包括晶粒尺寸、晶粒分布、晶粒取向和晶界结构。
陶瓷材料中的晶粒尺寸和分布对材料的力学性能、耐磨性能和耐热性能具有重要的影响。
此外,陶瓷材料中的晶粒取向可以对材料的力学性能和导热性能产生重要的影响。
陶瓷材料中的晶界结构也是一个重要的概念,对陶瓷材料的力学性能和导热性能有着重要的影响。
陶瓷材料的微观组织特征对陶瓷材料的成型、烧结、抛光等过程中的材料性能有着重要的影响。
高分子材料的微观组织特征主要包括聚合物链的构型、分子结晶、晶粒尺寸和晶界结构。
高分子材料中聚合物链的构型对材料的强度、韧性和耐磨性能有着重要的影响。
高分子材料中的分子结晶对材料的耐热性能和耐溶剂性能有着重要的影响。
高分子材料中的晶界结构对材料的热加工、冷加工和固溶处理等过程中的材料性能有着重要的影响。
高分子材料的微观组织特征对高分子材料的成型、挤压、拉伸等过程中的材料性能有着重要的影响。
复合材料的微观组织特征主要包括基体和增强相的分布、界面结构和晶粒尺寸。
复合材料的基体和增强相的分布对材料的强度、韧性和硬度有着重要的影响。
材料科学中的微观结构调控材料科学是一门研究物质结构与性质关系的学科,该学科的主要任务是设计、制备和研究具有特定性质的新型材料,为各行各业的应用提供支持。
材料结构是材料性能的基础,而微观结构是材料结构的基础。
因此,在材料研究中,微观结构调控是材料制备和性能控制的重要一环。
一、微观结构的基本构成与组织形貌材料科学中的微观结构是指材料的最小尺度结构,包括晶体结构、晶界、孪晶、位错、晶格缺陷等组分。
通常在材料分析中采用的常规方法是金相显微镜、扫描电镜、透射电镜等,可以观察到材料的组织形貌、晶体尺寸、成分分布和缺陷类型等。
二、微观结构调控的意义和方法微观结构的改变可以直接影响材料的性能。
因此,微观结构调控是实现材料性能优化和材料标准化的重要一环。
微观结构调控的方法主要包括以下四种。
1.材料组元控制通过控制合金中不同组元的含量和比例等方式,来调整材料的成分,从而实现对材料微观结构的调控。
该方法广泛应用于金属材料、非金属材料和高分子材料等。
2.合金化控制合金化是指将不同物种的单质或合金化合物混合后进行合成。
通过控制合金化过程中的加热、冷却速率等参数,以调整材料的晶体生长行为、晶格缺陷分布和晶界结构,从而实现对微观结构的调控。
3.加工处理控制加工处理是指通过冷、热加工方式,对金属材料进行压缩、滚压、锻造、拉伸等处理,以改变材料的微观结构。
例如,通过改变材料的变形方式、变形量和变形速率等控制参数,调整材料晶粒尺寸、位错密度和晶界特征等,从而改变材料的力学性能。
4.表面处理控制表面处理是通过对材料表面进行物理、化学或生物处理,来改变材料的表面化学组成、形貌、结构和性质。
常见的表面处理方法包括沉积工艺、阳极氧化、离子注入、涂覆等。
三、微观结构调控在材料制备中的应用举例1.金属材料微观结构调控铝合金是应用最广泛的金属结构材料之一。
通过调控合金化处理和冷加工处理控制过程,可以控制铝合金的晶体生长、晶界移动和位错滑移等微观结构演化行为,实现对铝合金基体和孪晶分布、晶粒尺寸和位错密度的调控。
高分子材料界面微观结构解析高分子材料是一类由大量重复单体分子通过共价键连接而成的大分子化合物。
它们广泛应用于许多领域,如塑料、纺织、医药和电子等。
高分子材料的性能往往取决于材料内部的微观结构以及不同界面之间的相互作用。
高分子材料界面的微观结构是指两种或多种材料之间的交界面处的结构。
这些界面对于材料的性能和应用具有重要影响。
界面的微观结构可以影响材料的机械性能、热性能、电性能等多个方面。
首先,界面的微观结构对高分子材料的黏附性能有着重要影响。
在两种不同材料界面接触时,如果界面处存在充分的结合作用力,两种材料会更好地黏附在一起。
通过分析界面的微观结构,可以了解材料分子在界面上的排列方式,进而设计具有良好黏附性能的材料。
其次,界面的微观结构还对高分子材料的界面助剂的添加有着重要影响。
界面助剂可以在材料界面上形成一层保护膜,改善界面结合力和耐候性。
通过对界面的微观结构进行解析,可以了解界面助剂在界面上的分布情况和作用机制,从而优化其添加方式和浓度,提高材料的性能。
此外,界面的微观结构对高分子材料的界面改性有着重要影响。
通过在界面处引入功能性基团或添加填充材料,可以改善材料的机械性能、热稳定性和导电性。
通过对界面的微观结构进行解析,可以了解填充材料的分散状态和界面改性剂与高分子材料之间的相互作用,从而指导界面改性的设计和优化。
此外,界面的微观结构对高分子材料的电性能也有着重要影响。
在聚合物太阳能电池和有机电子器件等领域,界面的微观结构对电荷的传输和收集起着关键作用。
通过研究界面的微观结构,可以了解电荷在等离子共振、极化和离域化等过程中的相互作用,从而优化电子器件的性能。
在研究高分子材料界面微观结构时,常用的实验技术包括扫描电镜、透射电镜、X射线衍射和傅里叶变换红外光谱等。
这些技术可以提供关于材料形貌、晶体结构、分子取向和交联程度等信息。
同时,计算模拟方法,如分子动力学模拟和量子化学计算,也可以用来研究高分子材料界面的微观结构。
高分子材料的微观结构分析高分子材料(polymer)是由很多重复单元(monomer)经过聚合反应形成的巨大分子链。
其分子结构非常复杂,具有各种各样的物理、化学性质,如软硬度、透明度、耐化学腐蚀性等。
在行业中广泛应用于电子、医疗、建筑、汽车等领域。
高分子材料的研究对于优化其应用性能和开发新的高性能材料至关重要。
其中,高分子材料的微观结构分析是研究高分子材料的多种性质和性能的基础。
一、高分子材料的分子结构高分子材料的分子结构在微观层级上相当复杂。
高分子分子链通常在化学键的形成过程中形成的,这些化学键可以是共价键,如丙烯酸甲酯聚合物(poly(methyl methacrylate, PMMA)),缩合键,如聚对苯二甲酸酯(polyethylene terephthalate,PET),或共轭双键,如聚苯乙烯(polystyrene,PS)。
不同的单元在聚合过程中,不同的分子间键合方式,以及不同的化学结构都会影响高分子材料的性能。
高分子材料还可以形成横向的化学键。
例如,在聚苯亚砜(polyamide,PA)中,酰基(amide)通过一系列的氢键,形成网络结构。
在聚合物中,不同的键合方式会影响高分子材料的机械性能、热性能、耐化学腐蚀性等。
二、高分子材料的局部结构在高分子聚合体中,分子链的序列和排列方式通常是不规则和无序的。
因此,高分子材料的局部结构是非常复杂的,但是,其在局部和宏观上的链排列方式可以被视为相对有序的。
高分子链在聚合过程中通常会出现分支,较长的分支会在高分子聚合体中形成交联结构。
例如,在交联聚乙烯(cross-linked polyethylene,XLPE)中,氢键缩合成的分支机构可以导致跨链的结构,使材料具有高的耐热性和强度。
这些微观结构的差异会对高分子材料的物理、化学性质产生显著的影响。
三、高分子材料的晶体结构分析除了分子构型外,高分子的晶体结构也对高分子材料的性能产生显著的影响。
高分子材料的力学性能与微观结构研究探讨在现代材料科学的领域中,高分子材料因其独特的性能和广泛的应用而备受关注。
高分子材料的力学性能,如强度、韧性、弹性等,对于其在各个领域的应用起着至关重要的作用。
而这些力学性能与高分子材料的微观结构之间存在着密切的关联。
深入研究这种关系,对于开发性能更优异、应用更广泛的高分子材料具有重要的意义。
高分子材料的微观结构是极其复杂且多样的。
从分子链的构型到聚集态结构,每一个层次的结构特征都对其力学性能产生着深刻的影响。
首先,分子链的化学组成是决定高分子材料基本性质的重要因素。
不同的单体单元以及它们之间的连接方式,会赋予高分子材料不同的化学性质和物理性能。
例如,聚乙烯中的碳链结构相对简单,其力学性能主要表现为柔韧性较好但强度相对较低;而聚苯乙烯由于苯环的存在,其刚性相对较大,强度较高但韧性稍逊。
分子链的构型也对力学性能有着显著的影响。
线型分子链通常具有较好的柔顺性,能够在受力时发生较大的形变,从而表现出较好的韧性;而支化和交联的分子链结构则会限制分子链的运动,使材料的强度和硬度提高,但韧性可能会有所降低。
以橡胶为例,未硫化的橡胶分子链呈线型,具有较好的弹性但强度不足;经过硫化处理后,分子链之间形成交联结构,强度大幅提高,同时仍能保持一定的弹性。
高分子材料的聚集态结构同样是影响其力学性能的关键因素。
晶态和非晶态结构的比例和分布,会显著改变材料的性能。
晶态区域具有较高的规整性和密度,能够提供较高的强度和硬度;而非晶态区域则赋予材料一定的柔韧性和弹性。
例如,部分结晶的聚乙烯,其结晶区域提供了强度支撑,非晶区域保证了材料的可加工性和韧性。
此外,高分子材料的微观结构还包括相分离结构。
在共聚物或聚合物共混体系中,不同相之间的相容性和界面特性对力学性能有着重要影响。
良好的相容性和强的界面结合能够有效地传递应力,提高材料的力学性能;反之,如果相分离不均匀或界面结合较弱,材料在受力时容易发生相分离破坏,导致力学性能下降。
高分子材料结构分析引言高分子材料是一种由大分子聚合物组成的材料,具有重要的工业应用和科学研究价值。
了解高分子材料的结构对于研究其性质和应用具有重要意义。
本文将介绍高分子材料结构分析的方法和技术。
一、传统结构分析方法传统的高分子材料结构分析方法包括X射线衍射、核磁共振和红外光谱等。
1. X射线衍射X射线衍射是研究高分子材料结构最常用的方法之一。
通过将X射线束照射到高分子材料上,利用晶体衍射原理,在探测器上得到衍射图样。
通过解析衍射图样,可以确定高分子材料的晶体结构和晶格参数。
2. 核磁共振核磁共振是利用核磁共振现象研究高分子材料结构的方法。
通过将高分子材料置于强磁场中,利用核磁共振现象来获得高分子材料的特征谱图。
核磁共振谱图可以提供高分子材料内部原子的相对位置和化学环境的信息。
3. 红外光谱红外光谱是研究高分子材料结构的另一种重要方法。
通过将红外光照射到高分子材料上,观察材料对红外光的吸收情况。
不同的官能团对应着不同的红外光谱峰,通过对红外光谱的分析,可以确定高分子材料的结构。
二、现代结构分析方法随着科学技术的发展,现代结构分析方法在高分子材料研究中得到了广泛应用。
下面介绍几种常用的现代结构分析方法。
1. 激光拉曼光谱激光拉曼光谱是利用拉曼散射现象进行结构分析的方法。
通过将激光照射到高分子材料上,观察材料散射的拉曼光谱。
拉曼光谱提供了高分子材料的分子振动信息,可以揭示其结构和构型。
2. 原子力显微镜原子力显微镜是一种能够在原子尺度上进行观察的仪器。
利用探针扫描样品表面,根据探针和样品之间的相互作用力,得到样品表面的形貌和结构信息。
原子力显微镜可以用于观察高分子材料的微观结构和表面形态。
3. 激光光散射激光光散射是一种用于研究高分子材料结构和动力学行为的方法。
通过照射高分子材料样品,观察散射光子的散射情况,可以得到高分子材料的分子量、分子尺寸和分子链排列等信息。
三、计算模拟方法计算模拟方法是一种通过计算机建立高分子材料的模型,模拟其结构和性质的方法。
高分子材料的界面性质研究高分子材料是一类重要的功能性材料,其应用领域涉及电子、光电子、医疗、化工等多个领域。
然而,高分子材料的性质与表现与其所处于的环境有着密切的关系,因此研究高分子材料的界面性质成为了一项十分重要的任务。
高分子材料的界面性质是指其与环境物质之间的相互作用和影响。
这些相互作用和影响可以来自不同的环境物质,如溶液、气体、固体等,也可以来自高分子材料表面上的不同部位或不同结构。
研究高分子材料的界面性质不仅可以帮助我们深入了解高分子材料的特性,还可以为高分子材料的应用提供指导和支持。
一、高分子材料表面的化学结构对界面性质的影响高分子材料的表面化学结构是影响其界面性质的重要因素之一。
对于聚合物材料而言,其表面化学结构可以通过不同的方法来调控,如表面化学修饰、聚合物侧链修饰等。
这些方法可以改变聚合物表面的化学键结构和表面电荷等因素,从而影响其在不同环境中的相互作用和影响。
例如,在水溶液中,聚乙烯醇(PVA)的表面化学结构会影响其在溶液中的吸附和分散行为。
实验结果表明,表面羟基官能团含量较高的PVA能够更好地分散在水溶液中,而表面羟基含量较低的PVA则容易凝聚成大团块,形成颗粒状的沉淀物质。
另外,聚合物表面的官能团结构也会影响其与其他物质之间的相互作用。
例如,含羧酸官能团的聚合物表面与钙离子之间会发生络合反应,从而形成钙离子的化合物沉淀。
因此,在高分子材料的应用中,需要对其表面化学结构进行精调和控制,以达到更高的应用性能和效率。
二、高分子材料的界面能对其应用性能的影响除了高分子材料表面的化学结构外,其界面能也是影响其应用性能的重要因素之一。
高分子材料与其他物质之间的相互作用和能量变化,表现在高分子材料的表面能和界面能上。
表面能和界面能的大小和差值对于高分子材料的润湿行为、附着性能、摩擦学性质等方面有着重要的影响。
例如,在涂料和涂层领域中,高分子材料的界面能可以影响其与基底材料之间的附着性能。
五大凝胶材料微观结构-回复五大凝胶材料的微观结构凝胶材料是一种具有连续三维空间结构和大量吸水性的材料,常用于医药、化妆品、食品等领域。
凝胶材料的微观结构是其性能和应用的基础,下面将分步回答五大凝胶材料的微观结构。
第一步:水凝胶材料的微观结构水凝胶材料是由水分子和高分子物质构成的材料。
在微观层面上,水凝胶材料的高分子物质呈现网状结构,类似于海绵。
这种结构使得水凝胶材料具有极强的吸水性能,能够吸收并储存大量的水分。
此外,水凝胶材料的高分子链之间还存在相互交错的交联结构,这种交联结构使得水凝胶材料具有较大的弹性和形变能力。
第二步:有机凝胶材料的微观结构有机凝胶材料是由有机高分子物质构成的材料。
在微观层面上,有机凝胶材料的高分子物质通常形成蜂窝状的结构。
这种蜂窝状结构使得有机凝胶材料具有大量的孔隙和表面积,能够吸附和储存大量的气体和液体分子。
有机凝胶材料的高分子链之间也存在交联结构,这种交联结构使得有机凝胶具有一定的弹性和形变能力。
第三步:无机凝胶材料的微观结构无机凝胶材料是由无机物质构成的材料。
在微观层面上,无机凝胶材料的无机物质通常形成细小的颗粒或纳米管状结构。
这种颗粒或纳米管状结构使得无机凝胶材料具有大量的孔隙和表面积,能够吸附和储存大量的气体和液体分子。
无机凝胶材料的颗粒或纳米管之间也存在一定的连接结构,这种连接结构使得无机凝胶具有一定的弹性和形变能力。
第四步:生物凝胶材料的微观结构生物凝胶材料是由生物大分子构成的材料,如蛋白质、多糖等。
在微观层面上,生物凝胶材料的生物大分子通常形成复杂的三维空间结构。
这种三维空间结构使得生物凝胶材料具有高度的结构多样性和生物活性,能够模拟和逼真地再现生物组织的结构和功能。
生物凝胶材料的生物大分子之间还存在相互作用和交联结构,这种相互作用和交联结构赋予了生物凝胶材料特殊的性能和功能。
第五步:混合凝胶材料的微观结构混合凝胶材料是由两种或多种不同类型的凝胶材料混合而成的材料。
高分子材料的微观结构与物理性能研究引言:高分子材料是由大量重复单元结构组成的大分子化合物,其具有独特的物理和化学性质。
研究高分子材料的微观结构与物理性能之间的关系,对于优化材料性能、设计新材料具有重要意义。
一、高分子材料的微观结构高分子材料的微观结构是由聚合物链的排列方式和交联情况决定的。
主要有线性、支化和交联三种结构类型。
1. 线性结构线性高分子材料的聚合物链呈直线排列,没有交联点。
这种结构常见于聚乙烯、聚丙烯等材料中。
由于没有交联点的存在,线性高分子材料具有良好的可加工性和可拉伸性。
2. 支化结构支化高分子材料的聚合物链在聚合物链的主链上分支出若干侧链。
这种结构常见于聚苯乙烯、聚醚硫醚等材料中。
由于支化结构可以减少聚合物链的晶界区域,提高材料的柔韧性和热稳定性。
3. 交联结构交联高分子材料的聚合物链通过共价键交联形成三维网络结构。
这种结构常见于硅橡胶、聚氨酯等材料中。
由于交联结构的存在,材料具有较高的强度和耐热性。
二、高分子材料的物理性能高分子材料的微观结构直接影响其物理性能。
常见的物理性能包括力学性能、热性能、电性能等。
1. 力学性能高分子材料的力学性能包括强度、韧性、硬度等指标。
微观结构决定了材料的晶化程度、晶粒大小等因素,从而影响了材料的力学性能。
例如,线性高分子材料由于没有交联点,往往具有较高的韧性;而交联高分子材料由于其网络结构的存在,具有较高的强度。
2. 热性能高分子材料的热性能主要包括熔融温度、热变形温度等指标。
微观结构中的晶粒大小、晶化程度等因素影响了材料的热性能。
一般来说,材料中晶粒越大、晶化程度越高,其熔融温度和热变形温度越高。
3. 电性能高分子材料的电性能主要包括导电性、介电性等指标。
微观结构中的电荷分布和电子运动情况影响了材料的电性能。
对于具有共轭结构的高分子材料,可以实现电荷的输运和电子的共享,从而具有较好的导电性能。
三、微观结构与物理性能的关系高分子材料的微观结构对其物理性能具有非常重要的影响。
高分子材料是以高分子化合物为主要组分的材料。
高分子化合物是分子量很大的化合物,每个分子可含几千、几万甚至几十万个原子。
在元素周期表中只有ⅢA、ⅣA、ⅤA、ⅥA中部分非金属、亚金属元素(如N、C、B、O、P、S、Si、Se等)才能形成高分子链。
由于高聚物中常见的C、H、O、N等元素均为轻元素,所以高分子材料具有密度小的特点
(1)高分子链的几何形态
1)线型分子链由许多链节组成的长链,通常是卷曲成线团状。
这类结构高聚物的特点是弹性、塑性好,硬度低,是热塑性材料的典型结构。
2)支化型分子链在主链上带有支链。
这类结构高聚物的性能和加工都接近线型分子链高聚物。
3)体型分子链分子链之间由许多链节相互横向交联。
具有这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性材料的典型结构。
(2)高分子链的构象及柔顺性
由于单链内旋转所产生的大分子链的空间形象称为大分子链的构象。
由于构象变化获得不同卷曲程度的特性。
这种能拉伸、回缩的性能称为分子链的柔性,这是聚合物具有弹性的原因。
(3)高聚物的聚集态结构
高分子化合物的聚集态结构是指高聚物内部高分子链之间的几何排列或堆砌结构,也称超分子结构。
依分子在空间排列的规整
性可将高聚物分为结晶型、部分结晶型和无定型(非晶态)三类。
在实际生产中大多数聚合物都是部分晶态或完全非晶态。
晶态结构在高分子化合物中所占的质量分数或体积分数称为结晶度。
结晶度越高,分子间作用力越强,因此高分子化合物的强度、硬度、刚度和熔点越高,耐热性和化学稳定性也越好;而与键运动有关的性能,如弹性、伸长率、冲击韧性则降低。
陶瓷亦称无机非金属材料,是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(、氧化物、碳化物、硅化物等)为原料,经粉碎、配置、成型和高温烧制而成的无机非金属材料。
陶瓷的基本相结构主要有:晶相、玻璃相、气相等。
晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。
它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。
玻璃相是一种非晶态物质。
其作用:①粘连晶体相,填充晶体相间空隙,提高材料致密度;②降低烧成温度,加快烧结;③阻止晶体转变,抑制其长大;④获得透光性等玻璃特性;⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。
气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。
陶瓷根据气孔率分致密陶瓷、无开孔陶瓷和多孔陶瓷。
气孔对陶瓷的性能不利(多孔陶瓷除外)。
普通陶瓷气孔率5%~10%,特种陶瓷气孔率5%以下,金属陶瓷气孔率低于0.5%。
工程材料的性能
金属材料的物理性能主要有密度、熔点、导热导电性、热膨胀性
等。
密度,单位体积物质的质量称为该物质的密度。
密度小于5×103kg/ m3的金属称为轻金属,如铝、镁、钛及它们的合金。
密度大于5×103kg/ m3的金属称为重金属,如铁、铅、钨等。
熔点,金属从固态向液态转变时的温度称为熔点。
熔点高的金属称为难熔金属,如钨、钼、钒等,可以用来制造耐高温零件,如在火箭、导弹、燃气轮机和喷气飞机等方面得到广泛应用。
熔点低的金属称为易熔金属,如锡、铅等,可用于制造熔丝和防火安全阀零件等。
导热性,导热性通常用导热率来衡量。
热导率的符号是λ,单位是W/(m·K)。
导热率越大,导热性越好。
金属的导热性以银为最好,铜、铝次之。
导电性,金属材料能够传导电流的能力称导电性,通常用电导率来衡量,电导率越大,金属材料导电性越好。
金属导电性以银为最好,铜、铝次之。
热膨胀性,金属材料随着温度变化而膨胀、收缩的特性称为热膨胀性。
金属材料的化学性能主要就抗氧化性和耐蚀性等。
抗氧化性,金属材料在加热时抵抗氧化作用的能力称抗氧化性。
加入Cr、Si等合金元素可提高钢的抗氧化性。
耐蚀性,金属材料在常温下抵抗氧、水蒸气及其它化学介质腐蚀破坏作用的能力称耐蚀性。
金属材料的工艺性能有很多,其中金属材料铸造成形的能力称为
铸造性能,常用流动性、收缩性和偏析来衡量。
金属锻造成形的能力为锻造性能。
它主要取决于金属的塑性和变形抗力。
金属切削的难易程度称为切削加工性能。
金属能焊接成具有一定使用性能的焊接接头的特性称为焊接性能。
金属经热处理可使性能顺利改善的性质称为热处理性能。