(1)两相静止坐标下永磁同步电动机的数学模型
- 格式:docx
- 大小:36.39 KB
- 文档页数:1
永磁同步电机的数学模型及矢量控制原理WAA磁同步电机的转F上水盛体的安装方式的不同,则电机的制造丄适用场所、运行•性能、控制方法也郁有所五同。
根据氷磁体在转子上的位貰不同,永磁同步电机可分为小叫(i)表骷式永磁同应电机t Surface-mounted PMSM.简称SPMSM A. SPM)* Jt转f结构如下图所示。
SPM电机转子上的永磁体位于转子铁芯的表面,通常呈瓦片形, 为电机提供径向磁通。
另外,因外包钢膜上的感生涡流损耗,遣成较大的铁损,而且气隙较大•导致其效率较低。
但磁阻转矩较小.若对其进行合理的控制可获得较好的低速运转特性。
(ii)内埋式永磁同步电机(Interior PMSM,简称1PMSM或IPM),此类电机转子上的永磁体位于转了内部,通常呈条状。
由丁此种转子具仃不对称的磴路給构,所以它比SPMSM 分磁阳转矩,从而大大提离了电机的功率密度F实现屈磁控制。
同时,由于永磁休在转子铁芯内部,所以这类电机有更加坚固的转子結构,适合运转于高速场IPM 的定子电感随转『鎚极位西非线性变化.所以1PM的捽制性能随;匸子电流换柑相移影响口SPM与IPM的转于结构如图2.1所示。
本文上嘤研究SPMSM的数学模型及其矢豐控制方法。
水磁体铁芯<a> SPM转子结构<b) IPM转予结构图2.【永毬同歩电机转子蒂构2.2永磁同步电机的数学模型木节苜先建立PMSM的数学模型,这也是后续研究PMSM矢丘控制算法的屣础"接卜來分别对三相静止坐标系、两和邯止坐标系和两相旋转堰标系F的PMSM 的数学模型进行描述。
严格的说,永磁同步电机是一个存在非线性磁化特性和饱和效应的电磁装留,它的 动态方程式一个高阶微分方程,很难对它进行粘确求解,所以必须对它进行一定程度的 简化,将它化成一个二阶微分方程组。
为了突出主婆何题,先忽略次要因素,作如下假 设叫(1) 忽略谐波效应,设定子三相绕组完全对称且在空间中互差120°电角度,所 产生理想正弦磁动势;(2) 忽略永磁体的非线件饱和因素,认为各相绕纽的阴值、电感都是恒定的,FI Ro = R 、= R< = &丄(! = — = Lc ;(3) 不计电机的磁滞损耗和涡流损耗等: (4) 不考电频率和温度变化对电机参数的场响: (5) 转子上没有阻尼绕组,永磁体没有阻尼作用。
永磁同步电机的数学模型及矢量控制原理WAA磁同步电机的转F上水盛体的安装方式的不同,则电机的制造丄适用场所、运行•性能、控制方法也郁有所五同。
根据氷磁体在转子上的位貰不同,永磁同步电机可分为小叫(i)表骷式永磁同应电机t Surface-mounted PMSM.简称SPMSM A. SPM)* Jt转f结构如下图所示。
SPM电机转子上的永磁体位于转子铁芯的表面,通常呈瓦片形, 为电机提供径向磁通。
另外,因外包钢膜上的感生涡流损耗,遣成较大的铁损,而且气隙较大•导致其效率较低。
但磁阻转矩较小.若对其进行合理的控制可获得较好的低速运转特性。
(ii)内埋式永磁同步电机(Interior PMSM,简称1PMSM或IPM),此类电机转子上的永磁体位于转了内部,通常呈条状。
由丁此种转子具仃不对称的磴路給构,所以它比SPMSM 分磁阳转矩,从而大大提离了电机的功率密度F实现屈磁控制。
同时,由于永磁休在转子铁芯内部,所以这类电机有更加坚固的转子結构,适合运转于高速场IPM 的定子电感随转『鎚极位西非线性变化.所以1PM的捽制性能随;匸子电流换柑相移影响口SPM与IPM的转于结构如图2.1所示。
本文上嘤研究SPMSM的数学模型及其矢豐控制方法。
水磁体铁芯<a> SPM转子结构<b) IPM转予结构图2.【永毬同歩电机转子蒂构2.2永磁同步电机的数学模型木节苜先建立PMSM的数学模型,这也是后续研究PMSM矢丘控制算法的屣础"接卜來分别对三相静止坐标系、两和邯止坐标系和两相旋转堰标系F的PMSM 的数学模型进行描述。
严格的说,永磁同步电机是一个存在非线性磁化特性和饱和效应的电磁装留,它的 动态方程式一个高阶微分方程,很难对它进行粘确求解,所以必须对它进行一定程度的 简化,将它化成一个二阶微分方程组。
为了突出主婆何题,先忽略次要因素,作如下假 设叫(1) 忽略谐波效应,设定子三相绕组完全对称且在空间中互差120°电角度,所 产生理想正弦磁动势;(2) 忽略永磁体的非线件饱和因素,认为各相绕纽的阴值、电感都是恒定的,FI Ro = R 、= R< = &丄(! = — = Lc ;(3) 不计电机的磁滞损耗和涡流损耗等: (4) 不考电频率和温度变化对电机参数的场响: (5) 转子上没有阻尼绕组,永磁体没有阻尼作用。
永磁同步电机的全维状态观测器设计在环境污染和能源危机日益严重的今天,节能减排是大势所趋,而永磁同步电机高启动转矩、高效率、高功率因数和低惯性的优点正好可以满足节能减排的需求,因而有关永磁同步电机的研究越来越多,同时稀土永磁材料和微电子技术的快速发展,也使得永磁同步电机的飞速发展成为现实,它的使用范围也逐渐扩展至交通运输,航空,军事和民用等重要领域。
不同的电机控制策略对应着不同的控制效果,所以采用何种控制策略来使永磁同步电机具有高效、高节能、高稳定性的性能就成为了学者们的研究热点。
目前常见的电机控制方式为矢量控制(FOC)和直接转矩控制(DTC)。
对于永磁同步电机 DTC 来说,理想状况下转矩在全速范围内应该是稳定不变的。
然而受时滞现象和不同速度区域内工作状态的影响,实际中电机转矩并不是稳定的。
因此如何减小转矩脉动、提高全速范围内转矩的稳定性能是永磁电机DTC 研究的重点。
本文拟用降维状态观测器构建基于状态观测器的永磁同步电机直接转矩控制系统,并验证其准确性。
1. 永磁同步电机的分类和结构特点永磁同步电机与其他电机一样都是由定子和转子组成,其中定子是三相对称的绕组并且通常接成 Y 型,转子为永磁体结构。
当定子绕组中通以三相正弦交流电时会产生均匀旋转的磁场,这个磁场和转子永磁体磁场相互作用就会产生一个转矩来推动转子不断地旋转。
目前转子上的永磁体有三种安放方式,每一种安放方式都对应各自的电机制造工艺、适用场所、运行性能、控制方法,因此根据永磁体的安放方式可将电机分为以下三类:图 1 三种电机的内部结构其中a为插入式,b为表面式,c为内置式图1(a)描述的是插入式永磁同步电机。
插入式永磁同步电机,即永磁体插入或部分插入转子中,故而它的结构要比表面式永磁电机稳定。
从电磁性能上来说,其属于凸极式永磁电机,转子磁路不对称,有磁阻转矩且其交、直轴电感不同。
由于其磁通密度大,所产生的转矩也较大,比较适合有高转速需求的场合。
(一) PMSM 的数学模型交流电机是一个非线性、强耦合的多变量系统。
永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。
在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。
为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响。
永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:(l)电机在两相旋转坐标系中的电压方程如下式所示:d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ⎧=+-⎪⎪⎨⎪=++⎪⎩其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。
若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。
cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ⎛⎫ ⎪-⎛⎫⎪⎛⎫ ⎪⎪=--- ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭ ⎪+-+⎝⎭(2)d/q 轴磁链方程: d d d f q q qL i L i ψψψ=+⎧⎪⎨=⎪⎩ 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项倍。
一、电机分类二、永磁同步电机的分类三、PMSM的运行原理四、坐标变换五、PMSM的数学模型六、伺服系统软件设计七、SVPWM原理及实现方法一、电机分类:1、按作用分:电动机和发电机。
电动机将电能转化为机械能;发电机将其他形式的能量转化为电能。
2、按工作电源分类根据电动机工作电源的不同,可分为直流电动机和交流电动机。
其中交流电动机还分为单相电动机和三相电动机。
3、按结构及工作原理分类电动机按结构及工作原理可分为直流电动机,异步电动机和同步电动机。
同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同步电动机。
异步电动机可分为感应电动机和交流换向器电动机。
感应电动机又分为三相异步电动机、单相异步电动机和罩极异步电动机等。
交流换向器电动机又分为单相串励电动机、交直流两用电动机和推斥电动机。
直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。
有刷直流电动机可分为永磁直流电动机和电磁直流电动机。
电磁直流电动机又分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。
永磁直流电动机又分为稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。
4、按用途分类电动机按用途可分为驱动用电动机和控制用电动机。
驱动用电动机又分为电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型机床、小型机械、医疗器械、电子仪器等)用电动机。
二、永磁同步电机的分类:永磁同步电机由于具有以下优点而得到了广泛的应用:1)功率密度大(同等功率,特性体积小)2)功率因数高(气隙磁场主要或全部由转子磁场提供)3)效率高(不需要励磁绕组,绕组损耗小)4)结构紧凑、体积小、重量轻、维护简单。
永磁同步电机分为正弦波电流驱动的永磁同步电机(PMSM)和方波电流驱动永磁同步电机(BLDCM)。
(1)两相静止坐标下永磁同步电动机的数学模
型
永磁同步电动机的数学模型可以表示为:
1. 电磁转矩方程:
磁链方程:
ψd = Ld * id + (Lq - Ld) * iq
ψq = Lq * iq
电磁转矩方程:
Te = 1.5 * (ψd * iq - ψq * id)
其中,ψd和ψq分别表示直轴和交轴磁链,Ld和Lq表示直轴和交轴的电感。
2. 电流方程:
直轴电流方程:
Ud = R * id + ωe * Lq * iq + ψq * ωm
Uq = R * iq - ωe * Ld * id - ψd * ωm
其中,Ud和Uq分别表示直轴和交轴电压,R表示电阻,ωe表示定子电流的角频率,ωm表示转子电流的角频率。
3. 机械方程:
转速方程:
Te = J * dωm/dt + B * ωm
其中,Te表示电磁转矩,J表示转动惯量,B表示转子的摩擦阻尼系数。
综上所述,这些方程构成了永磁同步电动机的数学模型,可以用来描述其电磁转矩、电流和转速之间的关系。