当前位置:文档之家› 城市交通隧道[]

城市交通隧道[]

城市交通隧道[]
城市交通隧道[]

12城市交通隧道

国内外发生的隧道火灾均表明,隧道特殊的火灾环境对人员逃生和灭火救援是一个严重的挑战,而且火灾在短时间内就能对隧道设施造成很大的破坏。有限的逃生和救援条件,要求对隧道采取与地面建筑不同的防火措施。

由于国家对地下铁道的防火设计要求已有标准,而管线隧道、电缆隧道的情况与城市交通隧道有一定差异,本章主要根据国内外隧道情况和相关标准,确定了城市交通隧道的通用防火技术要求。

12.1一般规定

12.1.1城市交通隧道(以下简称隧道)的防火设计应综合考虑隧道内的交通组成、隧道的用途、自然条件、长度等因素。

【条文说明】12.1.1隧道的用途及交通组成、通风情况决定了隧道可燃物数量与种类、火灾的可能规模及其增长过程和火灾延续时间,影响隧道发生火灾时可能逃生的人员数量及其疏散设施的布置;隧道的环境条件和隧道长度等决定了消防救援和人员的逃生难易程度及隧道的防烟、排烟和通风方案;隧道的通风与排烟等因素又对隧道中的人员逃生和灭火救援影响很大。因此,隧道设计应综合考虑各种因素和条件后,合理确定防火要求。

12.1.2单孔和双孔隧道应按其封闭段长度和交通情况分为一、二、三、四类,并应符合表12.1.2的规定。

救援困难;2)不仅车载量更大,而且需通行运输危险材料的车辆,有时受条件限制还需采用单孔双向行车道,导致火灾规模增大,对隧道结构的破坏作用大;3)车流量日益增长,导致发生火灾的可能性增加。本规范在进行隧道分类时,参考了日本《道路隧道紧急情况用设施设置基准及说明》和我国《公路隧道交通工程设计规范》等标准,并适当做了简化,考虑的主要因素为隧道长度和通行车辆类型。

12.1.3隧道承重结构体的耐火极限应符合下列规定:

1一、二类隧道和通行机动车的三类隧道,其承重结构体耐火极限的测定应符合本规范附录C的规定;对于一、二类隧道,火灾升温曲线应采用本规范附录C第C.0.1条规定的RABT标准升温曲线,耐火极限分别不应低于2.00h和1.50h;对于通行机动车的三类隧道,火灾升温曲线应采用本规范附录C第C.0.1条规定的HC标准升温曲线,耐火极限不应低于2.00h;

2其他类别隧道承重结构体耐火极限的测定应符合现行国家标准《建筑构件耐火试验方法第1部分:通用要求》GB/T9978.1的规定;对于三类隧道,耐火极限不应低于2.00h;对于四类,耐火极限不限。

【条文说明】12.1.3本务为强制性标准条文。隧道结构一旦受到破坏,特别是发生明塌时,其修复难度非常大,花费也大。同时,火灾条件下的隧道结构安全,是保证火灾时灭火救援和火灾后隧道尽快修复使用

的重要条件。不同隧道可能的火灾规模与持续时间有所差异。目前,各国以建筑构件为对象的标准耐火试验,均以ISO834的标准升温曲线(纤维质类)为基础,如BS476第20部分、DIN4102、AS1530和GB9978等。该标准升温曲线以常规工业与民用建筑物内的材料的燃烧特性为基础,模拟了地面开放空间火灾的发展状况,但这一模型不适用于石油化工工程中的有些火灾,也不适用于常见的隧道火灾。

隧道火灾是以碳氢火灾为主的混合火灾。碳氢(HC)标准升温曲线的特点是所模拟的火灾在发展初期带有爆燃-热冲击现象,温度在最初5min之内可达到930℃左右,20min后稳定在1080℃左右。这种升温曲线模拟了火灾在特定环境或高潜热值燃料燃烧的发展过程,在国际石化工业领域和隧道工程防火中得到了普遍应用。过去,国内外开展了大量研究来确定可能发生在隧道以及其它地下建筑中的火灾类型,特别是1990年前后欧洲开展的Eureka研究计划。根据这些研究的成果,发展了一系列不同火灾类型的升温曲线。其中,法国提出了改进的碳氢标准升温曲线、德国提出了RABT曲线、荷兰交通部与TNO实验室提出了RWS标准升温曲线,我国则以碳氢升温曲线为主。在RABT曲线中,温度在5min之内就能快速升高到1200℃,在1200℃处持续90min,随后的30min内温度快速下降。这种升温曲线能比较真实地模拟隧道内大型车辆火灾的发展过程:在相对封闭的隧道空间内因热量难以扩散而导致火灾初期升温快、有较强的热冲击,随后由于缺氧状态和灭火作用而快速降温。火灾在最大热释放功率条件的持续时间受众多因素的影响。

此外,试验研究表明,混凝土结构受热后会由于内部产生高压水蒸气而导致表层受压,使混凝土发生爆裂。结构荷载压力和混凝土含水率越高,发生爆裂的可能性也越大。当混凝土的质量含水率大于3%时,受高温作用后肯定会发生爆裂现象。当充分干燥的混凝土长时间暴露在高温下时,混凝土内各种材料的结合水将会蒸发,从而使混凝土失去结合力而发生爆裂,最终会一层一层地穿透整个隧道的混凝土拱顶结构。这种爆裂破坏会影响人员逃生,使增强钢筋暴露于高温中失去强度而致结构破坏,甚至导致结构垮塌。对于水底隧道,这种结构性破坏很难进行修复。因此,本条对内衬的耐火也做了相应规定。

为满足隧道防火设计需要,在本规范附录C中增加了有关隧道结构耐火试验方法的有关要求。12.1.4本条为强制性标准条文。服务于隧道的重要设备用房,主要包括隧道的通风与排烟机房、变电站、消防设备房。其他地面附属用房,主要包括收费站、道口检查亭、管理用房等。隧道内及地面保障隧道日常运行的各类设备用房、管理用房等基础设施以及消防救援专用口、临时避难间,在火灾情况下担负着灭火救援的重要作用,需确保这些用房的防火安全。

12.1.4隧道内的地下设备用房、风井和消防救援出入口的耐火等级应为一级,地面的重要设备用房、运营管理中心及其他地面附属用房的耐火等级不应低于二级。

12.1.5除嵌缝材料外,隧道的内部装修应采用不燃材料。

【条文说明】12.1.5隧道内发生火灾时的烟气控制和减小火灾烟气对人的毒性作用也是隧道防火面临的主要问题,要严格控制装修材料的燃烧性能及其发烟量,特别是可能产生大量毒性气体的材料。

12.1.6通行机动车的双孔隧道,其车行横通道或车行疏散通道的设置应符合下列规定:

1水底隧道宜设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔宜为1000m-1500m;

2非水底隊道应设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔不宜大于1000m;

3车行横通道应沿垂直隧道长度方向布置,并应通向相邻隧道;车行疏散通道应沿隧道长度方向布置在双孔中间,并应直通隧道外;

4车行横通道和车行疏散通道的净宽度不应小于4.0m,净高度不应小于4.5m;

5隧道与车行横通道或车行疏散通道的连通处,应采取防火分隔措施。

【条文说明】12.1.6本条主要规定了不同隧道车行横通道或车行疏散通道的设置要求。

1当隧道发生火灾时,下风向的车辆可继续向前方出口行驶,上风向的车辆则需要利用隧道辅助设施进行疏散。一般,隧道内的车辆疏散可采用两种方式,一是在双孔隧道之间设置车行横通道,另一种是在双孔中间设置专用车行疏散通道。相比较,前者工程量小、造价较低,在工程中得到普遍应用;后者可靠性更好、安全性高,但因造价高,在工程中应用不多。双孔隧道之间的车行横通道、专用车行疏散通道不仅可用于隧道内车辆疏散,还可用于巡查、维修、救援及车辆转换行驶方向。

车行横通道间隔及隧道通向车行疏散通道的入口间隔,在本次修订时进行了适当调整,水底隧道由原规定的500m-1500m调整为1000m-1500m,非水底隧道由原规定的200m-500m调整为不宜大于1000m。主要考虑到两方面因素:一方面,受地质条件多样性的影响,城市隧道的施工方法较多,穿越江、河、湖泊等水底隧道常采用盾构法、沉管法施工,在隧道两管间设置车行横通道的工程风险非常大,可实施性不强;另一方面,城市隧道灭火救援晌应快、隧道内消防设施齐全,而且越来越多的城市隧道设计有多处进、出口匝道,事故时,车辆可利用匝道进行疏散。

此外,本条规定还参考了国内、外相关规范,如国家行业标准《公路隧道设计规范》JTGD70-2004和《欧洲道路隧道安全》等标准或技术文件。《公路隧道设计规范》规定,山岭公路隧道的车行横通道间隔:车行横通道的设置间距可取750m,并不得大于1000m:长1000m-1500m的隧道宜设置1处,中、短隧道可不设;《欧洲道路隧道安全》规定,双管隧道之间车行横通道的间距为1500m;奥地利RVS9.281/9.282规定,车行横向连接通道的间距为1000m。综上所述,本次修订适当加大了车行横通道的间隔。

2《公路隧道设计规班》JTGD70-2004对山岭公路隧道车行横通道的断面建筑限界规定,如图13所示。城市交通隧道对通行车辆种类有严格的规定,如有些隧道只允许通行小型机动车、有些隧道禁止通行货车、有些是客货混用隧道。横通道的断面建筑限界应与隧道通行车辆种类相适应,仅通行小型机动车或禁止通行大型货车的隧道横通道的断面建筑限界可适当降低。

图13 车行横通道的断面建筑限界(单位cm)

3隧道与车行横通道或车行疏散通道的连通处釆取防火分隔措施,是为防止火灾向相邻隧道或车行疏散通道蔓延。防火分隔措施可采用耐火极限与相应结构耐火极限一致的防火门,防火门还要具有良好的密闭防烟性能。

12.1.7双孔隧道应设置人行横通道或人行疏散通道,并应符合下列规定:

1人行横通道的间隔和隧道通向人行疏散通道入口的间隔,宜为250m-300m;

2人行疏散横通道应沿垂直双孔隧道长度方向布置,并应通向相邻隧道。人行疏散通道应沿隧道长度方向布置在双孔中间,并应直通隧道外;

3人行横通道可利用车行横通道;

4人行横通道或人行疏散通道的净宽度不应小于1.2m,净高度不应小于2.1m;

5隧道与人行横通道或人行疏散通道的连通处,应釆取防火分隔措施,门应采用乙级防火门。

【条文说明】12.1.7本条规定了双孔隧道设置人行横通道或人行疏散通道的要求。

在隧道设计中,可以釆用多种逃生避难形式,如横通道、地下管廊、疏散专用道等。釆用人行横通道和人行疏散通道进行疏散与逃生,是目前隧道中应用较为普遍的形式。人行横通道是垂直于两孔隧道长度方向设置、连接相邻两孔隧道的通道,当两孔隧道中某一条隧道发生火灾时,该隧道内的人员可以通过人行横通道疏散至相邻隧道。人行疏散通道是设在两孔隧道中间或隧道路面下方、直通隧道外的通道,当隧道发生火灾时,隧道内的人员进入该通道进行逃生。人行横通道与人行疏散通道相比,造价相对较低,且可以利用隧道内车行横通道。设置人行横通道和人行疏散通道时,需符合以下原则:

1人行横道道的间隔和隧道通向人行疏散通道的入口间隔,要能有效保证隧道内的人员在较短时间内进入人行横通道或人行疏散通道。

根据荷兰及欧洲的一系列模拟实验,250m为隧道内的人员在初期火灾烟雾浓度未造成更大影响情况下的最大逃生距离。《公路隧道设计规范》JTQD70-2004规定了山岭公路隧道的人行横通道间隔:人行横通道的设置间距可取250m,并不大于500m.美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA502(2011年版}规定隧道应有应急出口,且间距不应大手300m;当隧道被耐火极限为2.00h以上的结构分隔,或隧道为双孔时,两孔间的横通道可以替代应急出口,且间距不应大于200m。其他一些国家对人行横通道的规定如表22。

2人行横通道或人行疏散通道的尺寸要能保证人员的应急通行。

本次修订对人行横通道的净尺寸进行了适当调整,由原来的净宽度不应小于2.0m、净高度不应小于2.2tn 分别调整为净宽度不应小子1.2m、净高度不应小于2.lm。原规定主要参照《公路隧道设计规范》JTGD70-2004对山岭公路人行隧道横通道的断面建筑限界规定。城市隧道由于地质条件的复杂性和施工方法的多样性,相当多的城市隧道采用盾构法施工,设置宽度不小于2.0m的人行横通道难度很大、工程风险高。本次修订的人行横通道宽度,参考了美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA502(2011年版〉的相关规定(人行横通道的净宽不小于l.12m),同时,结合我国人体特征,考虑了满足2股人流通行及消防员带装备通行的需求。

另外,人行横通道的宽度加大后也不利于对疏散通道实施正压送风。

综合以上因素,本次修订时适当调整了人行横通道的尺寸,使之既满足人员疏散和消防员通行的要求,又能降低施工风险。

3隧道与人行横通道或人行疏散通道的连通处所进行的防火分隔,应能防止火灾和烟气影响人员安全疏散。

目前较为普遍的做法是,在隧道与人行横通道或人行疏散通道的连通处设置防火门。美国消防协会《公路隧道、桥梁及其他限行公路标准》NFPA502(2011年版〉规定,人行横通道与隧道连通处门的耐火极限应达到1.5h。

12.1.8单孔隧道宜设置直通室外的人员疏散门或独立避难所等避难设施。

【条文说明】12.1.8避难设施不仅可为逃生人员提供保护,还可用作消防员暂时躲避烟雾和热气的场所。在中、长隧道设计中,设置人员的安全避难场所是一项重要内容。避难场所的设置要充分考虑通道的设置、隔间及空间的分配以及相应的辅助设施的要求。对于较长的单孔隧道和水底隧道,采用人行疏散通道或人行横通道存在一定难度时,可以考虑其它形式的人员疏散或避难,如设置直通室外的疏散出口、独立的避难场所、路面下的专用疏散通道等。

12.1.9隧道内的变电站、管廊、专用疏散通道、通风机房及其他辅助用房等,应采取耐火极限不低于2.00h的防火隔墙和乙级防火门等分隔措施与车行隧道分隔。

【条文说明】12.1.9隧道内的变电站、管廊、专用疏散通道、通风机房等是保障隧道日常运行和应急救援的重要设施,有的本身还具有一定的火灾危险性。因此,在设计中要采取一定的防火分隔措施与车行隧道分隔。其分隔要求可参照本规范第6章有关建筑物内重要房间的分隔要求确定。

12.1.10隧道内地下设备用房的每个防火分区的最大允许建筑面积不应大于1500m2,每个防火分区的安全出口数量不应少于2个,与车道或其它防火分区相通的出口可作为第二安全出口,但

必须至少设置1个直通室外的安全出口;建筑面积不大于500m2且无人值守的设备用房可设置1个直通室外的安全出口。

【条文说明】12.1.10本条规定了地下设备用房的防火分区划分和安全出口设置要求。考虑到隧道的一些专用设备,如风机房、风道等占地面积较大、安全出口难以开设,且机房无人值守,只有少数人员巡检的实际情况,规定了单个防火分区的最大允许建筑面积不大于1500m2,以尽量减少直通地面安全出口的设置。

12.2消防给水和灭火设施

12.2.1在进行城市交通的规划和设计时,应同时设计消防给水系统。四类隧道和行人或通行非机动车辆的三类隧道,可不设置消防给水系统。

12.2.2消防给水系统的设置应符合下列规定:

1消防水源和供水管网应符合国家现行有关标准的规定;

2消防用水量应按隧道的火灾延续时间和隧道全线同一时间发生一次火灾计算确定。一、二类隧道的火灾延续时间不应小于3.0h;三类隧道,不应小于2.0h;

3隧道内的消防用水量应按需要同时开启所有灭火设施的用水量之和计算;

4隧道内宜设置独立的消防给水系统。严寒和寒冷地区的消防给水管道及室外消火栓应釆取防冻措施;当釆用干式给水系统时,应在管网的最高部位设置自动排气阀,管道的充水时间不宜大于90s;

5隧道内的消火栓用水量不应小于20L/s,隧道外的消火栓用水量不应小于30L/s。对于长度小于1000m的三类隧道,隧道内、外的消火栓用水量可分别为10L/s和20L/s。

6管道内的消防供水压力应保证用水量达到最大时,最不利点处的水枪充实水柱不小于10.0m。消火栓栓口处的出水压力大于0.5MPa时,应设置减压设施;

7在隧道出入口处应设置消防水泵接合器和室外消火栓;

8隧道内消火栓的间距不应大于50m,消火栓的栓口距地面高度宜为1.1m;

9设置消防水泵供水设施的隧道,应在消火栓箱内设置消防水泵启动按钮;

10应在隧道单侧设置室内消火栓箱,消火栓箱内应配置1支喷嘴口径19mm的水枪、1盘长25m、直径65mm的水带,并宜配置消防软管卷盘。

【条文说明】12.2.1-12.2.2条文参照本规范第8章及国内外相关标准的要求,规定了隧道的消防给水及其管道、设备等的一般设计要求。四类隧道和通行人员或非机动车辆的三类隧道,通常隧道长度较短或火灾危险性较小,可以利用城市公共消防系统或者灭火器进行灭火、控火,而不需单独设置消防给水系统。

隧道的火灾延续时间,与隧道内的通风情况和实际的交通状况关系密切,有时往往延续较长时间。本条尽管规定了一个基本的火灾延续时间,但有条件的,还是要根据隧道通行车辆及其长度,特别是一类隧道,尽量采用更长的设计火灾延续时间,以保证有较充分的灭火用水储备量。

在洞口附近设置的水泵接合器,对于城市隧道的灭火救援而言,十分重要。水泵接合器的设置位置,既要便于消防车向隧道内的管网供水,还要不影响附近的其他救援行动。

12.2.3隧道内应设置排水设施。排水设施应考虑排除渗水、雨水、隧道清洗等水量和灭火时的消防用水量,并应釆取防止事故时可燃液体或有害液体沿隧填漫流的措施。

【条文说明】12.2.3本条规定的隧道排水,其目的于排除灭火过程中产生的大量积水,避免隧道内因积

聚雨水、渗水、灭火产生的废水而导致可燃液体流散,增加疏散与救援的困难,防止运输可燃液体或有害液体车辆逸漏但未燃烧的液体,因缺乏有组织的排水措施而漫流进入其它设备沟、疏散通道、重要设备房等区域内而引发火灾事故。

12.2.4隧道内应设置ABC类灭火器,并应符合下列规定:

1通行机动车的一、二类隧道和通行机动车并设置3条及以上车道的的三类隧道,在隧道两侧均应设置灭火器;每个设置点不应少于4具;

2其他隧道,可在隧道一侧设置灭火器;每个设置点不应少于2具;

3灭火器设置点的间距不应大于100m。

【条文说明】12.2.4引发隧道内火灾的主要部位有:行驶车辆的油箱、驾驶室、行李或货物和客车的旅客座位等,火灾类型一释为A、B类混合,部分火灾可能因隧道内的电器设备、配电线路引起。因此,在隧道内要合理配置能扑灭ABC类的灭火器。

本条有关数值的确定,参考了国家标准《建筑灭火器配置设计规范》GB 50140-2005、美国消防协会、日本建设省的有关标准和国外有关隧道的研究报告。对于交通量大或者车道较多的隧道,为保证人身安全和快速处置初起火,有必要在隧道两侧设置灭火器。四类隧道一般为火灾危险性较小或长度较短的隧道,即使发生火灾,人员疏散和扑救均较容易。因此,消防设施的设置以配备适用的灭火器为主。

12.3通风和排烟系统

根据对隧道的火灾事故分析,由一氧化碳导致的人员死亡和因直接烧伤、爆炸及其它有毒气体引起的人员死亡约各占一半。通常,采用通风、防排烟措施控制烟气产物及烟气运动可以改善火灾环境,并降低火场温度以及热烟气和热分解产物的浓度,改善视线。但是,机械通风会通过不同途径对不同类型和规模的火灾产生影响,在某些情况下反而会加剧火势发展和蔓延。实验表明:在低速通风时,对小轿车的火灾影响不大;可以降低小型油池(约l0m2)火的热释放速率,但会加强通风控制的大型油池(约100m2)火的热释放速率;在纵向机械通风条件下,载重货车火的热释放速率可以迗到自然通风条件下時数倍。因此,隧道内的通风排烟系统设计,要针对不同隧道环境确定合适的通风排烟方式和排烟量。

12.3.1通行机动车的一、二、三类隧道应设置排烟设施。

【条文说明】12.3.1 本条为强制性标准条文。隧道的空间特性,导致其一旦发生火灾,热烟排除非常困难,往往会因高温而使结构发生破坏,烟气积聚而导致灭火、疏散困难且火灾延续时间很长。因此,隧道内发生火灾时的排烟是隧道防火设计的十分重要的内容。本条规定了需设置排烟设施的隧道,四类隧道因长度较短、发生火灾的概率较低或火灾危险性较小,可不设置排烟设施。

12.3.2隧道内机械排烟系统的设置应符合下列规定:

1长度大于3000m的隧道,宜采用纵向分段排烟方式或重点排烟方式;

2长度不大于3000m的单洞单向交通隧道,宜采用纵向排烟方式;

3单洞双向交通隧道,宜采用重点排烟方式。

12.3.3机械排烟系统与隧道的通风系统宜分开设置。合用时,合用的通风系统应具备在火灾时快速转换的功能,并应符合机械排烟系统的要求。

12.3.4隧道内设置的机械排烟系统应符合下列规定:

1采用全横向和半横向通风方式时,可通过排风管道排烟;

2采用纵向排烟方式时,应能迅速组织气流、有效排烟,其排烟风速应根据隧道内的最不利火灾规模确定,且纵向气流的速度不应小于2m/s,并应大于临界风速;

3排烟风机和烟气流经的风阀、消声器、软接等辅助设备,应能承受设计的隧道火灾烟气排放温度,并应能在250℃下连续正常运行不小于1.0h。排烟管道的耐火极限不应低于1.00h。

【条文说明】12.3.2-12.3.4隧道排烟方式分为自然排烟和机械排烟。自然排烟,是利用短隧道的洞口或在隧道沿途顶部开设的通风口(例如隧道敷设在路中绿化带下的情形)以及烟气自身浮力进行排烟的方式。釆用自然排烟时,应注意错位布置上、下行隧道开设的自然排烟口或上、下行隧道的洞口,防止非着火隧道汽车行驶形成的活塞风将邻近隧道排出的烟气“倒吸”入非着火隧道,造成烟气蔓延。

1隧道的机械排烟模式分为纵向排烟和横向排烟方式以及由这两种基本排烟模式派生的各种组合排烟模式。排烟模式应根据隧道种类、疏散方式,并结合隧道正常工况的通风方式确定,并将烟气控制在较小范围之内,以保证乘客疏散路径上满足逃生环境要求,同时为灭火救援创造条件。

2火灾时,迫使隧道内的烟气沿隧道纵向流动的排烟形式为纵向排烟模式,是适用干单向交通隧道的一种最常用烟气控制方式。该模式可通过悬挂在隧道内的射流风机或其他射流装置、风井送排风设施等及其组合方式实现。纵向通风排烟时,气流方向与车行方向一致,以火源点为界,火源点下游为烟气区、上游为非烟气区,司乘人员往气流上游方向疏散。由于高温烟气沿坡度向上扩散速度很快,当在坡道上发生火灾,并采用纵向排烟控制烟流,排烟气流逆坡向时,必须使纵向气流的流速高于临界风逮。试验证明,纵向排烟控制烟气的效果较好。P1ARC(国际道路协会)相关报告以及美国纪念隧道试验(1993年-1995年)均表明,对于火灾功率低于100MW的火灾、隧道坡度不高于4%时,3m/s的气流速度可以控制烟气回流。

近年来,大于3km的长大城市隧道越来越多,若整个隧道长度不进行分段通风,会造成火灾及烟气在隧道中的影响范围非常大,不利于消防救援以及灾后的修复。因此,本规范规定大于3km的长大隧道宜采用纵向分段排烟或重点排烟方式,以控制烟气的影响范围。

纵向排烟方式不适用于双向交通的隧道,因在此情况下釆用纵向排烟方式会使火源一侧、不能驶离隧道的车辆处于烟气中。

3重点排烟是横向排烟方式的一种特殊情况,即在隧道纵向设置专用排烟风道,并设置一定数量的排烟口,火灾时只开启火源附近或火源所在设计排烟区的排烟口,直接从火源附近将烟气快速有效地排出行车道空间,并从两端洞口自然补风,隧道内可形成一定的纵向风速。该排烟方式适用于双向交通隧道或经常发生交通阻塞的隧道。

隧道试验表明,全横向或半横向排烟系统对发生火灾的位置比较敏感,控烟能力不很理想。因此,对于双向通行的隧道,尽量采用重点排烟方式。重点排烟的排烟量应根据火灾规模、隧道空间形状等确定,排烟量不应小于火灾的产烟量,隧道中重点排烟的排烟量目前还没有公认的数值,表23是国际道路协会(PIARC)推荐的烟雾体积流量。

4流经风机的烟气温度与隧道的火灾规模和风机距火源点的距离有关,火源小、距离远,隧道结构的冷却作用大,烟气温度也相应较低。通常位于排风道末端的排烟风机,排出的气体为位于火源附近的高温烟气与周围冷空气的混合气体,该气体的温度在沿隧道和土建风道流动过程中得到了进一步冷却。澳大利亚某隧道、美国纪念隧道以及我国在上海进行的隧道试验均表明:尽管火源距排烟风机较近,由于隧道的冷却作用,在排烟风机位置的烟气温度仍然低于250℃。因此,规定排烟风机要能耐受250℃的高温基本可以满足隧道排烟的要求。当设计火灾规模很大、风机离火源点很近时,排烟风机的耐高温设计要求可根据工程实际情况确定。本条的相关温度规定值为最低要求。

5排烟设备的有效工作时间,是保证隧道内人员逃生和灭火救援环境的基本时间。人员撤离时间与隧道

内的实际人数、逃生路径及环境有关。目前,已经有多种计算机模拟软件可以对建筑物中的人员疏散时间进行预测,设备的耐高温时间可在此基础上确定。本规范规定的排烟风机的耐高温时间还参考了欧洲有关隧道的设计要求和试验研究成果。

6本条中有关避难场所内有关防烟的要求,参照了建筑内防烟楼梯间和避难走道的有关规定。

12.3.5隧道的避难设施内应设置独立的机械加压送风系统,其送风的余压值应为30Pa-50Pa。

12.3.6隧道内用于火灾排烟的射流风机,应至少备用一组。

【条文说明】12.3.6隧道内用于通风和排烟的射流风机是悬挂于隧道车行道的上部,火灾时可能直接暴露于高温下,但隧道内的排烟风机设置是要根据其有效作用范围来确定,风机间有一定的间隔。采用射流风机进行排烟的隧道,设计需考虑到正好在火源附近的射流风机由于温度过高而导致失效的情况,保证有一定的冗余配置。

12.4火灾自动报警系统

12.4.1隧道入口外100m-150m处,应设置隧道内发生火灾时能提示车辆禁入隧道的警报信号装置。

【条文说明】12.4.1隧道内发生火灾时,隧道外行驶的车辆往往还正按正常速度驶入隧道,对隧道内的情况多处于不知情的状态,故规定本条要求,以警示并阻止后续车辆进入隧道。

12.4.2一、二类隧道应设置火灾自动报警系统,通行机动车的三类隧道宜设置火灾自动报警系统。火灾自动报警系统的设置应符合下列规定:

1应设置火灾自动探测装置;

2隧道出入口和隧道内每隔100m-150m处,应设置报警电话和报警按钮;

3应设置火灾应急广播或应每隔100m-150m处设置发光警报装置。

【条文说明】12.4.2为早期发现、及早通知隧道内的人员与车辆进行疏散和避让,向相关管理人员报警以采取救援行动,尽可能在初期将火扑灭,要求在隧道内设置合适的火灾报警系统。火灾报警装置的设置需根据隧道类别分别考虑,并至少要具备手动或自动报警功能。对于长大隧道,应设置火灾自动报警系统,并要求具备报警联络电话、声光显示报警功能。由于隧道内的环境差异较大,较工业与民用建筑物内的条件恶劣,如风速大、空气污染程度高等,因此火灾探测与报警装置的选择要充分考虑这些不利因素。

12.4.3隧道用电缆通道和主要设备用房内应设置火灾自动报警系统。

【条文说明】12.4.3隧道内的主要设备用房和电缆通道,因平时无人值守,着火后人员很难及时发现,因此也需设置必要的探测与报警系统,并使其火警信号能传送到监控室。

12.4.4对于可能产生屏蔽的隧道,应设置无线通信等保证灭火时通信联络畅通的设施。

【条文说明】12.4.4隧道内一般均具有一定的电磁屏蔽效应,可能导致通信中断或无法进行无线联络。为保障灭火救援的通信联络畅通,在可能出现屏蔽的隧道内需采取措施使无线通信讯号,特别是要保证城市公安消防机构的无线通信网络信号能进入隧道。

12.4.5封闭段长度超过1000m的隧道宜设置消防控制室,消防控制室的建筑防火要求应符合本规范第8.1.7条和第8.1.8条的规定。

隧道内火灾自动报警系统的设计应符合现行国家标准《火灾自动报警系统设计规范》GB50116的规定。

【条文说明】12.4.5为保证能及时处理火警,要求长大隧道均应设置消防控制室。消防控制室的设置可以与其他监控室合用,其他要求应符合本规范第8章及现行国家标准《火灾自动报警系统设计规范》GB50116有关消防控制室的要求。隧道内的火灾自动报警系统及其控制设备组成、功能、设备布置以及火灾探测器、应急广播、消防专用电话等的设计要求,均需符合现行国家标准《火灾自动报警系统设计规范》GB50116的规定。

12.5供电及其他

12.5.1―、二类隧道的消防用电应按一级负荷要求供电;三类隧道的消防用电应按二级负荷要求供电。

【条文说明】12.5.1本条为强制性标准条文。消防用电的可靠性是保证建筑硝防设施可靠运行的基本保证。本条根据不同隧道火灾的扑救难度和发生火灾后可能的危害与损失、消防设施的用电情况,确定了隧道中消防用电的供电负荷要求。

12.5.2隧道的消防电源及其供电、配电线路等的其他要求应符合本规范第10.1节的规定

12.5.3隧道两侧、人行横通道和人行疏散通道上应设置疏散照明和疏散指示标志,其设置高度不宜大于1.5m。

一、二类隧道内疏散照明和疏散指示标志的连续供电时间不应小于1.5h;其他隧道,不应小于1.0h。其他要求可按本规范第10章的规定确定。

【条文说明】12.5.2-12.5.3隧道火灾的延续时间一般较长,火场环境条件恶劣、温度高,对消防用电设备、电源、供电、配电及其配电线路等的设计,要求较一般工业与民用建筑高。本条所规定的消防应急照明的延续供电时间,较一般工业与民用建筑的要求长,设计要采取有效的防火保护措施,确保消防配电线路不受高温作用而中断供电。一、二类隧道和三类隧道内消防应急照明灯具和疏散指示标志的连续供电时间,由原来的3.0h和1.5h分别调整为1.5h和1.0h。这主要基于两方面的原因:一方面,根据隧道建设和运营经验,火灾时隧道内司乘人员的疏散时间多为15min-60min,如应急照明灯具和疏散指示标志的时间过长,会造成UPS电源设备数量庞大、维护成本高;另一方面,欧洲一些国家对隧道防火的研究时间长,经验丰富,这些国家一些隧道规范和地铁隧道技术文件对应急照明时间的相关要求多数在l.0h之内。因此,本次修订缩短了隧道内消防应急照明灯具和疏散指示标志的连续供电时间。

12.5.4隧道内严禁设置可燃气体管道;电缆线槽应与其他管道分开敷设。当设置10kV及以上的高压电缆时,应采用耐火极限不低于2.00h的防火分隔体与其他区域分隔。

【条文说明】12.5.4本条为强制性标准条文。本条规定目的在于控制隧道内的灾害源,降低火灾危险,防止隧道着火时因高压线路、燃气管线等加剧火势的发展而影响安全疏散与抢险救援等行动。考虑到城市空间资源紧张,少数情况下不可避免存在高压电缆敷设需搭载隧道穿越江、河、湖泊等的情况,要求采取一定防火措施后允许借道敷设,以保障输电线路和隧道的安全。

12.5.5隧道内设置的各类消防设施均应采取与隧道内环境条件相适应的保护措施,并应设置明显的发光指示标志。

【条文说明】12.5.5隧道内的环境较恶劣,风速高、空气污染程度高,隧道内所设置的相关捕防设施要能耐受隧道内的恶劣环境影响,防止发生霉变、腐蚀、短路、变质等情况,确保设施有效。此外,也要在消防设施上或旁边设置可发光的标志,便于人员在火灾条件下快速识别和寻找。

附录A建筑高度和建筑层数的计算方法

A.0.1建筑高度的计算应符合下列规定:;

1建筑屋面为坡屋面时,建筑高度应为建筑室外设计地面至其檐口与屋脊的平均高度;

2建筑屋面为平屋面(包括有女儿墙的平屋面)时,建筑高度应为建筑室外设计地面至其屋面面层的高度;

3同一座建筑有多种形式的屋面时,建筑高度应按上述方法分别计算后,取其中最大值;

4对于台阶式地坪,当位于不同高程地坪上的同一建筑之间有防火墙分隔,各自有符合规范规定的安全出口,且可沿建筑的两个长边设置贯通式或尽头式消防车道时,可分别计算各自的建筑高度。否则,应按其中建筑高度最大者确定该建筑的建筑高度;

5局部突出屋顶的瞭望塔、冷却塔、水箱间、微波天线间或设施、电梯机房、排风和排烟机房以及楼梯出口小间等辅助用房占屋面面积不大于1/4者,可不计入建筑高度;

6对于住宅建筑,设置在底部且室内高度不大于2.2m的自行车库、储藏室、敞开空间,室内外高差或建筑的地下或半地下室的顶板面高出室外设计地面的高度不大于1.5m的部分,可不计入建筑高度。

A.0.2建筑层数应按建筑的自然层数计算,下列空间可不计入建筑层数:

1室内顶板面高出室外设计地面的高度不大于1.5m的地下或半地下室;

2设置在建筑底部且室内高度不大于2.2m的自行车库、储藏室、敞开空间;

3建筑屋顶上突出的局部设备用房、出屋面的楼梯间等。

附录B防火间距的计算方法

B.0.1建筑物之间的防火间距应按相邻建筑外墙的最近水平距离计算,当外墙有凸出的可燃或难燃构件时,应从其凸出部分外缘算起。

建筑物与储罐、堆场的防火间距,应为建筑外墙至储罐外壁或堆场中相邻堆垛外缘的最近水平距离。

B.0.2储罐之间的防火间距应为相邻两储罐外壁的最近水平距离。

储罐与堆场的防火间距应为储罐外壁至堆场中相邻堆垛外缘的最近水平距离。

B.0.3堆场之间的防火间距应为两堆场中相邻堆垛外缘的最近水平距离。

B.0.4变压器之间的防火间距应为相邻变压器外壁的蕞近水平距离。

变压器与建筑物、储罐或堆场的防火间距,应为变压器外壁至建筑外墙、储罐外壁或相邻堆垛外缘的最近水平距离。

B.0.5建筑物、储罐或堆场与道路、铁路的防火间距,应为建筑外墙、储罐外壁或相邻堆垛外缘距道路最近一侧路边或铁路中心线的最小水平距离。

附录C隧道内承重结构体的耐火极限试验升温曲线和相应的判定标准

C.0.1RABT和HC标准升温曲线应符合现行国家标准《建筑构件耐火试验可供选择和附加的试验程序》GB/T26784的规定。

C.0.2耐火极限判定标准

1当采用HC标准升温曲线测试时,耐火极限的判定标准为:受火后,当距离混凝土底表面25mm处钢筋的温度超过250℃,或者混凝土表面的温度超过380℃时,则判定为迖到耐火极限。

2当采用RABT标准升温曲线测试时,耐火极限的判定标准为:受火后,当距离混凝土底表面25mm处钢筋的温度超过300℃,或者混凝土表面的温度超过380℃时,则判定为达到耐火极限。

32sw_城市交通隧道防火

第四篇 其他建筑、场所防火——第四章城市交通隧道防火 考情分析 章节章名2015 2016 2017 2018 一概述0 0 0 0 二石油化工防火 4 3 4 3 三地铁防火 1 1 2 2 四城市交通隧道防火 1 1 1 1 五加油加气站防火 4 4 1 1 六发电厂与变电站防火0 1 3 3 学习要求:通过本章学习,了解交通隧道的分类及其特殊构造、隧道的火灾危险性及特点,掌握隧道结构耐火的主要措施、隧道安全疏散的主要形式、隧道的消防设施配置。 第一节隧道分类 一般分为汽车专用和汽车与行人混用的隧道。 一、分类标准 隧道的分类标准主要依据隧道建设规模、设计和施工方法、横断面形式以及交通运营特点,参见表1。 建设规模隧道长度 L/m 特长隧道长隧道中长隧道短隧道 3000

③多孔中有一孔或数孔可按交通需求改变交通运行方向,以适应潮流式交通需求 施工方法盾构法、沉管法、明挖法、钻爆法等 二、分类依据和说明 (一)按建设规模分类 (二)按施工方法分类 1.盾构法 采用盾构机械挖土掘进,并在盾构壳体保护下拼装预制的衬砌结构来支承周围土体,从而形成道。该方法以建造圆形隧道为主,如图4-4-1所示。 2.沉管法 采用水力压接技术将预制的管段在事先开挖的基槽内逐节连接起来,使之形成能防水、通行的通道。矩形隧道一般采用此法建造,如图4-4-2所示。 3.钻爆法 采用钻眼、爆破、出砟而形成结构空间的一种开挖方法,是目前修建山岭隧道的最通行的方法。 4.明挖法 采用放坡或围护的形式,从地表向下分段开挖、分段浇筑结构后回填覆盖,从而形成地下通道。连拱形隧道、矩形隧道可采用此法建造。连拱形遂道横断面示意图如图4-4-3所示。 【例题多选】隧道的施工方法是隧道主要分类依据之一,其可分为()等。 A.盾构法 B.结构法 C.沉管法

城市地下联系隧道防火设计规范

城市地下联系隧道防火设计规范 Standard on Fire Protection for City Underground Tunnel (征求意见稿) XXXX-XX-XX 实施 ICS XXX X XX 备案号:XXX-XXXX XXXX-XX-XX 发布 北京市质量技术监督局 发布 北京市规划委员会

北京市地方标准 城市地下联系隧道防火设计规范Standard on Fire Protection for City Underground Tunnel 编号: 备案号: 主编单位:北京市公安局消防局 中国建筑科学研究院 批准部门:北京市规划委员会 北京市质量技术监督局 实施日期:2014年月日 2014 北京

前言 根据《北京市“十二五”时期城乡规划标准化工作规划》及北京市质量技术监督局《关于印发2014年北京市地方标准制修订工作计划的通知》(京质监标发〔2014〕36号)的要求,编制组经过收集国内外资料,进行调查研究和试验,认真总结实践经验,参考国内外先进经验,并在广泛征求意见的基础上,编制了本规范。 本规范规定了城市地下联系隧道结构防火、人员疏散、消防给水与灭火设施、通风和排烟系统、火灾自动报警系统、电气的防火设计要求。主要技术内容分为7章,即总则、术语与定义、一般规定、消防给水与灭火设施、通风和排烟系统、火灾自动报警系统、电气及附录。 本规范由北京市规划委员会归口管理,北京市公安局消防局负责具体技术内容的解释。规范日常管理机构为北京市城乡规划标准化办公室。在实施过程中如发现需要修改和补充之处,请将意见寄至北京市公安局消防局(地址:北京市西直门南小街1号,邮编100035)。 本规范主编单位:北京市公安局消防局 中国建筑科学研究院建筑防火研究所 本规范参编单位:公安部天津消防研究所 北京市市政工程设计研究总院 北京新奥集团有限公司 北京品奥光电科技有限公司 上海腾盛智能系统工程有限公司 中国电子工程设计院中电投工程研究检测评定中心本规范主要起草人:马建民雷蕾杨欣李磊刘旭东李宏文冉鹏张昊 李桂芬罗凯金丽萍华高英路世昌郭再斌段旺 叶晓平朱晶晶尹康翟传明 本规范主要审查人员:(按姓氏笔画排名)

隧道进洞文献综述

隧道进口段施工 摘要 作为隧道工程施工的难点,良好洞口段施工是工程顺利由明洞到暗洞的关键,直接关系到工程的工期。施工的一般顺序包括:准备进洞,进洞施工,暗洞开挖。首先解决影响隧道进口处稳定的因素,然后因地制宜的采用各种进洞施工方法,最后进行暗洞开挖。隧道进口段施工所涉及的影响因子很多,现阶段进洞施工主要依据规范和经验。 关键词:隧道进口;地形;施工 Abstract Good construction of tunnel entrance is the key for the project as the difficulty factor of the tunnel construction ,directly related to the duration of the project . The general sequence of construction include: construction preparation ,entrance construction , tunnel excavation .Firstly settlement of the factors that affect the stability of the area where the tunnel is enter underground .Then using various entrance construction method to make sure that total and differential settlements is acceptable according the local conditions .At last tunnel excavation is beginning . A lot of impact factors involved in the construction of the tunnel entrance .The main basis of construction is norms and experience at this stage. Key words:Tunnel entrance;Terrain;Construction

城市道路交通状态评价指标体系

城市道路交通状态评价指标体系

第一章绪论 1.1 研究背景 1.1.1问题的提出 改革开放以来,随着中国现代化、城市化进程的加速,交通拥挤问题也逐渐产生并日益严重。近20年,内地民用汽车年平均增长率为13.3%,私人汽车年平均增长率高达23.7% 。其中,北京作为人口超过万人、机动车500万辆的特大城市,交通拥堵已成为制约城市发展的主要问题,10月的美国《外交政策》一书更是将北京列为世界五大拥堵城市之首。 城市交通拥挤已严重阻碍中国城市经济及空间布局结构的良性发展,在社会各个方面造成负面效应,具体表征为时间延误、能源浪费、大气污染及情绪影响等。这些负面效应使得社会外部成本增高,危害了人类的经济利益和健康安全,更不符合建设和谐交通的目的。 因此,从科学的角度对城市道路拥挤的根本原因进行深入分析显得格外重要。这不是单纯地统一增加道路基础设施建设、扩大路网规模来满足不断增长的交通需求量,而是经过拥挤识别确定城市不同道路的拥挤度来实施不同的解决措施。建立完善的、符合中国国情的交通拥挤识别体系并合理运用成为当务之急。

1.1.2 研究意义 中国是一个人口众多的发展中国家。自1991年以来,中国的经济发展速度持续超过10%,而持续的经济增长使得人民对交通的需求扩大。汽车产量增大,人民的购买力上升,人民的配车率提高,私人小汽车的数量快速增长,城市的交通需求与交通供给出现了不平衡状况,导致了城市特别是大城市严峻的交通拥挤问题。因此,此次研究的目的就是经过分析交通指挥中心的固定检测器采集和实地考察的交通数据,在交通拥挤识别体系下,计算出有效的道路实时动态交通信息,根据获取的数据信息实时、准确地为管理者制定合理有效的交通拥挤疏导策略。 1.2国内外研究现状 1.2.1拥挤识别研究现状 到当前为止,国内外对很多学者研究开发了许多的 ACI 算法。 加利福尼亚算法。经过比较邻近检测站之间的交通参数数据,对可能存在的突发交通事件进行判别,由此确定交通拥挤的发生。此算法于 1965-1970 年间,由加利福尼亚洲运输部开发。 McMaster 算法。该算法由Persaud et al(1990)根据突变理论开发出来。它使用大量的拥挤和非拥挤交通状态下的流量-占有率历史数据,开发一个流量-占有率分布关系模板,经过将观测数据之

城市交通隧道建筑防火设计要求

城市交通隧道建筑防火设计要求。 一、建筑结构耐火 (二)结构耐火极限要求 隧道内附属构筑物(如风机房、变压器洞室、水泵房、柴油发动机房等)应采用耐火极限不低于2.00h的隔墙和耐火极限不低于1.50h 的楼板、顶板乙级防火门与隧道分开。 二、防火分隔 隧道内地下设备用房的每个防火分区的最大允许面积不应大于1500㎡,隧道内应采用防火墙或耐火极限不低于3.00h 的耐火构件将隧道附属构筑物(用房),如辅助坑道以及专用避难疏散通道、独立避难间等与隧道分隔开,形成相互独立的防火分区。 三、隧道的安全疏散设施 (一)安全出口和疏散通道 1.安全出口 隧道内地下设备用房的每个防火分区安全出口数最不应少于两个,与车道或其他防火分区相通的出口可作为第二安全出口,但必须至少设置1 个直通室外的安全出口;建筑面积不大于500m2 且无人值守的设备用房可设置1 个直通室外的安全出口。 2.安全通道 根据隧道形式不同,可分为四类:一是利用横洞作为疏散联络道,两座隧道互为安全疏散通道;二是利用平行导坑作为疏散通道;三是利用竖井、斜井等设置人员疏散通道;四是利用多种辅助坑道组合设置人员疏散通道 (二)疏散楼梯 双层隧道上下层车道之间有条件的情况下,可以设置疏散楼梯,火灾时通过疏散楼梯至另一层隧道,间距一般取100m 左右。 四、隧道的消防设施配置 (一)灭火设施 1.常用灭火设施布置 (1)消火栓系统。隧道内应设置独立的消防给水系统,隧道内的消火栓用水量不应小于20L/s,洞口的消火栓用水量不应小于30L/s。隧道内消火栓的间距不应大于50m。 (二)报警设施

除隧道内需设置火灾报警设施外,其配套设备用房如:变压器室、配电室、机房等也应配有警铃、手报、广播、探测器等相应的报警和警报设施。 1.一般规定 隧道入口处100m~150m处,应设置报警信号装置。隧道封闭长度超过1000m时,应设置消防控制中心。 2.系统设置 (1)火灾报警控制器数量设置。隧道长度L小于1500m时,可设置一台火灾报警控制器;长度L 大于等于1500m 的隧道,可设置一台主火灾报警控制器和多台分火灾报警控制器,其间宜采用光纤通信连接。 (2)车行隧道内一般每隔50m 设置手动报警按钮。 (三)防排烟系统 2.排烟模式 长度大于3000m的隧道,宜采用纵向分段排烟方式或重点排烟方式;长度不大于3000m的单洞单向交通隧道,宜采用纵向排烟方式;单洞双向交通隧道,宜采用重点排烟方式。 (四)通信系统 通信系统主要包括:消防专用电话系统、广播系统、电视监视系统、消防无线通信系统等。 1.消防专用电话系统 防灾控制室应与消防部门设置直线电话。隧道内应设置消防紧急电话,一般每100m 宜设置一台。 2.广播系统 火灾事故广播无需单独设置,可与隧道运营广播系统合用。火灾事故广播具有优先权。 (五)应急照明和疏散指示标志 1.一般规定 高速公路隧道应设置不间断照明供电系统。长度大于1000m 的其他交通隧道应设置应急照明系统。应急照明应采用双电源双回路供电方式,并保证照明中断时间不超过0.3s。 以上就是关于城市交通隧道建筑防火设计要求

隧道施工防火规定(正式版)

隧道施工防火规定 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:___________________ 日期:___________________

隧道施工防火规定 温馨提示:该文件为本公司员工进行生产和各项管理工作共同的技术依据,通过对具体的工作环节进行规范、约束,以确保生产、管理活动的正常、有序、优质进行。 本文档可根据实际情况进行修改和使用。 为防止隧道工程施工过程中发生火灾事故, 保证施工人员生命和国家财产安全, 依据《中华人民共和国消防法》、公安部《关于建筑工程工地防火措施》和《铁路工程施工安全技术规程》等法律法规、规程规范, 特制定本规定。 第一条隧道工程施工防火是建筑工程施工现场安全防火的一个重要组成 部分, 应纳入整个隧道施工组织设计中进行统筹规划和实施。 第二条要加强隧道施工人员防火知识培训, 增强施工人员防火意识, 提高火灾自救能力。制定隧道防火工作预案, 组建义务消防队, 加强日常消防检查。 第三条根据隧道工程地质、施工工艺和隧道施工设施配备、材料使用情况确定隧道防火重点部位和区段, 设置警示标识, 制定专项安全防火措施, 确定防火责任人, 落实防火责任。 第四条隧道内的电气线路应悬挂设置, 接头应紧固可靠, 电气线路的导电能力应与负荷相适应, 严禁超负荷运行。 第五条对长、特大隧道内大型电器设备(变压器、高压开关柜、变配电室)设置安全防护栅栏, 设置警示标识, 每处配备4kg干粉灭火器1~2个, 其四周2米内禁止放置易燃易爆物品。 第六条隧道内值班电工必须定期对电线路及用电设备进行安全巡视, 发

城市交通大数据可视化框架及实现

城市交通大数据可视化框架及实现 随着智能交通在物联网、云计算、移动互联等领域的结合应 用和迅速发展,其发展模式已经从传统的信息不均衡、信息处理能力低效的系统发展成为真正的运用新技术的智能交通系统。智能交通系统是多个与交通有关的系统的综合应用,包括车路协同系统、公众出行便捷服务、车联网等,这些应用运用大数据技术、云计算技术、移动互联技术等为交通系统的智能化效率的提高提供重要的支持,不断提高智能交通系统的数据分析判断能力,以优化交通的运行管理,精准地掌握交通状况,给车辆和出行者带来更加智能化的服务。目前大数据技术已经应用在很多城市的智能交通领域,公众出行越来越离不开交通大数据分析带来的便利。 随着大数据技术的兴起,智能交通的发展也在飞速前进的阶段,交通大数据的总量已从TB级跃升为PB级并仍在不断攀升。但目前,在如何运用大数据技术有效处理分析这些日益剧增的交通大数据分析获取更有价值的信息的问题上,我国的智能交通发展仍然处于开始阶段。如何运用大数据技术,有效分析利用交通大数据,实现大数据的可视化,使其发挥出应有的价值,是现阶段智能交通发展的重要任务。 1数据可视化基本框架 1.1 数据可视化流程 科学可视化和信息可视化分别设计了可视化流程的参考体系结

构并被广泛应用于数据可视化系统中。可视分析学的基本流程则通过人机交互将自动和可视分析方法紧密结合。从数据到知识的转化方式有两种途径,交互的可视化方法和自动的数据挖掘方法。过程中用户即可以对可视化结果进行交互的修正,也可以调节参数以修正模型。 在相当多的应用场合,异构数据源需要在可视分析或自动分析方法之间被整合。因此,这个流程的第一步需要将数据预处理并转换,导出不同的表达,便于后续的分析,其他的预处理任务包括数据清洗、数据规范、数据归类和异构数据源集成。在任何一种可视化分析过程中,人都是最核心的要素。机器智能虽然在很多场合都比人的效率要高,但是机器只能承担替代一部分人所承担的工作,并不能够最终决策或对知识进行加工和使用。所以数据可视化的目的并不是替代人的判断和决策,而是为人所用,增强人的能力,提高人的效率。 1.2数据可视化流程中的核心要素数据可视化流程中的核心要 素包括 3 个方面。 1.2.1 数据表示与变换数据可视化的基础是数据表示和变换。为了允许有效的可视化、分析和记录,输入数据必须从原始状态变换到一种便于计算机处理的结构化数据表示形式。通常这些结构存在于数据本身,需要研究有效的数据提炼或简化方法以最大程度地保持信息和 知识的内涵及相应的上下文。

城市交通隧道[1](DOC)

12城市交通隧道 国内外发生的隧道火灾均表明,隧道特殊的火灾环境对人员逃生和灭火救援是一个严重的挑战,而且火灾在短时间内就能对隧道设施造成很大的破坏。有限的逃生和救援条件,要求对隧道采取与地面建筑不同的防火措施。 由于国家对地下铁道的防火设计要求已有标准,而管线隧道、电缆隧道的情况与城市交通隧道有一定差异,本章主要根据国内外隧道情况和相关标准,确定了城市交通隧道的通用防火技术要求。 12.1一般规定 12.1.1城市交通隧道(以下简称隧道)的防火设计应综合考虑隧道内的交通组成、隧道的用途、自然条件、长度等因素。 【条文说明】12.1.1隧道的用途及交通组成、通风情况决定了隧道可燃物数量与种类、火灾的可能规模及其增长过程和火灾延续时间,影响隧道发生火灾时可能逃生的人员数量及其疏散设施的布置;隧道的环境条件和隧道长度等决定了消防救援和人员的逃生难易程度及隧道的防烟、排烟和通风方案;隧道的通风与排烟等因素又对隧道中的人员逃生和灭火救援影响很大。因此,隧道设计应综合考虑各种因素和条件后,合理确定防火要求。 12.1.2单孔和双孔隧道应按其封闭段长度和交通情况分为一、二、三、四类,并应符合表12.1.2的规定。 救援困难;2)不仅车载量更大,而且需通行运输危险材料的车辆,有时受条件限制还需采用单孔双向行车道,导致火灾规模增大,对隧道结构的破坏作用大;3)车流量日益增长,导致发生火灾的可能性增加。本规范在进行隧道分类时,参考了日本《道路隧道紧急情况用设施设置基准及说明》和我国《公路隧道交通工程设计规范》等标准,并适当做了简化,考虑的主要因素为隧道长度和通行车辆类型。 12.1.3隧道承重结构体的耐火极限应符合下列规定: 1一、二类隧道和通行机动车的三类隧道,其承重结构体耐火极限的测定应符合本规范附录C的规定;对于一、二类隧道,火灾升温曲线应采用本规范附录C第C.0.1条规定的RABT标准升温曲线,耐火极限分别不应低于2.00h和1.50h;对于通行机动车的三类隧道,火灾升温曲线应采用本规范附录C第C.0.1条规定的HC标准升温曲线,耐火极限不应低于2.00h; 2其他类别隧道承重结构体耐火极限的测定应符合现行国家标准《建筑构件耐火试验方法第1部分:通用要求》GB/T9978.1的规定;对于三类隧道,耐火极限不应低于2.00h;对于四类,耐火极限不限。 【条文说明】12.1.3本务为强制性标准条文。隧道结构一旦受到破坏,特别是发生明塌时,其修复难度非常大,花费也大。同时,火灾条件下的隧道结构安全,是保证火灾时灭火救援和火灾后隧道尽快修复使用

隧道施工防火规定(正式)

编订:__________________ 单位:__________________ 时间:__________________ 隧道施工防火规定(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5880-87 隧道施工防火规定(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 为防止隧道工程施工过程中发生火灾事故,保证施工人员生命和国家财产安全,依据《中华人民共和国消防法》、公安部《关于建筑工程工地防火措施》和《铁路工程施工安全技术规程》等法律法规、规程规范,特制定本规定。 第一条隧道工程施工防火是建筑工程施工现场安全防火的一个重要组成部分,应纳入整个隧道施工组织设计中进行统筹规划和实施。 第二条要加强隧道施工人员防火知识培训,增强施工人员防火意识,提高火灾自救能力。制定隧道防火工作预案,组建义务消防队,加强日常消防检查。 第三条根据隧道工程地质、施工工艺和隧道施工设施配备、材料使用情况确定隧道防火重点部位和区段,设置警示标识,制定专项安全防火措施,确定

防火责任人,落实防火责任。 第四条隧道内的电气线路应悬挂设置,接头应紧固可靠,电气线路的导电能力应与负荷相适应,严禁超负荷运行。 第五条对长、特大隧道内大型电器设备(变压器、高压开关柜、变配电室)设置安全防护栅栏,设置警示标识,每处配备4kg干粉灭火器1~2个,其四周2米内禁止放置易燃易爆物品。 第六条隧道内值班电工必须定期对电线路及用电设备进行安全巡视,发现安全隐患及时维修,并做好巡视维修记录备查。长、特长隧道内所用电缆宜采用非延燃电缆和电线。 第七条严格隧道内施工动火的监控。隧道内确需进行明火施工或进行电、气焊时,要严格按照安全操作规程操作,划定安全区域,清除其四周10米内的一切易燃易爆物品。当确需立体交叉动火作业时,应用非燃烧材料对易燃、可燃材料进行隔离,并设专人负责监视和安全防护。

内外隧道火灾及消防技术现状综述

国内外隧道火灾及消防技术现状综述1 摘要近10年来我国公路和城市交通隧道里程延长较快给隧道的消防安全带来挑战国内外交通隧道事故造成的危害引起了各国对隧道消防安全问题的高度重视并先后组织力量进行了大量基础性研究取得了一定成果本文通过总结和分析了近年国内外重大隧道火灾事故 相关研究成果和主要国家隧道消防规范的要求提出了隧道火灾场景确定和我国有关隧道如何考虑防火设计及今后的研究方向 关键词隧道防火火灾场景升温曲线消防安全 1 概述 随着工程建设技术和交通事业的发展以及人类生产生活的不断需求各种铁路公路交通隧道和地下铁道简称地铁发展迅速据统计至2000年整个欧洲地区交通隧道的总长超过1万km 在第二次全国公路普查中我国县级以上公路隧道建设总长将近550km 但在路况改善的同时道路交通流量和车辆及其运输物品变化也很大不仅增加了交通隧道的火灾风险而且还引发了不少严重的火灾事故 隧道火灾不仅严重威胁人的生命和财产安全而且可能对交通设施人类的生产活动造成巨大破坏因此各国20近年来都投入了相当的力量对隧道的火灾行为以及火灾防护进行了较广泛的研究并取得了一定成果制定了一些技术要求和标准目前油槽列车隧道火灾扑救已基本得到解决即用1基金项目公安部城市交通隧道和地铁消防安全研究项目

封堵隧道洞口的方法使火灾窒息 交通隧道一般包括公路隧道铁路隧道和城市地铁隧道及城市其他交通隧道等地铁是构筑于地下的大容量轨道交通系统由车站行车隧道客运设施客车变配电设施通讯信号通风和给排水等设备及行车调度指挥机构组成主要用于城市交通 各类隧道在消防上没有本质区别原则上均应根据隧道允许通行的车辆和货物来考虑其实际的火灾场景确定更合理有效的消防安全措施本文回顾了各国发生的铁路隧道公路隧道和城市地铁火灾重点分析和总结了国内外在公路隧道地铁消防安全方面所做过的相关研究以期对我国城市交通隧道和地铁的消防安全设计研究及其发展有所裨益 2 隧道火灾的危险性和火灾原因 隧道和地铁建筑结构复杂环境相对密闭在封闭空间内热量不易消散火灾时温度较高对于通行载重汽车或油罐槽车等的公路隧道和油槽列车的铁路隧道火灾温度常达1000 以上火灾扑救相当困难往往会造成重大的人员伤亡和财产损失对于水下隧道还有因结构被破坏而导致隧道修复困难的可能因此各国对交通隧道和地下铁道的消防安全都十分重视2.1 公路铁路隧道的火灾危险性和火灾原因 隧道的火灾危险和火灾原因主要为车辆上的行李与危险货物车辆本身故障和隧道设计不合理等 1 车辆电气线路短路汽化器失灵载重汽车气动系统故障等 2 隧道内道路狭小能见度较差情况复杂易引起车辆相撞事故 3 隧道内通行的车辆载有易燃易爆物品遇明火或热源易发生

12城市交通隧道

12 城市交通隧道 12.1 一般规定 1 城市交通隧道(以下简称隧道)的防火设计应综合考虑隧道内的交通组成、隧道的用 途、自然条件、长度等因素进行。 2 单孔和双孔隧道应按其封闭段长度及交通情况分为一、二、三、四类,并应符合表12.1.2 的规定。 表12.1.2 隧道分类用 途 隧道封闭段长度L (m ) 一类二类三类四类 可通行危险化学品等机 动车 L>1500 500<L≤1500L≤500— 仅限通行非危险化学品 等机动车 L>3000 1500<L≤3000500<L≤1500L≤500仅限人行或通行非机动 车—— L>1500 L≤1500 3 一类隧道内承重结构体的耐火极限不应低于 2.00h;二类不应低于 1.50h;三类不应低于2.00h;四类隧道的耐火极限不限。 水底隧道的顶部应设置抗热冲击、耐高温的防火衬砌,其耐火极限应按相应隧道类别确 定。 注:1 一、二类隧道内承重结构体的耐火极限应采用RABT 标准升温曲线测试,通行 机动车的三类隧道的耐火极限应采用HC 标准升温曲线测试,并应符合本规范附录 A 的规定; 2 通行机动车的四类隧道和仅限人行或通行非机动车的三类隧道,其耐火极限试验可采用标准升温曲线和判定标准。 4 隧道内装修材料除嵌缝材料外,应采用不燃材料。 5 一、二、三类通行机动车的双孔隧道,其车行横通道或车行疏散通道应按下列规定设 置: 1 水底隧道宜设置车行横通道或车行疏散通道。车行横通道间隔及隧道通向车行疏 散通道的入口间隔,宜为500~1500m; 2 非水底隧道应设置车行横通道或车行疏散通道。车行横通道间隔及隧道通向车行 疏散通道的入口间隔,宜为200~500m; 3 车行横通道应沿垂直隧道长度方向设置,并应通向相邻隧道;车行疏散通道应沿 隧道长度方向在双孔中间设置,并应直通隧道外; 4 车行横通道和车行疏散通道的净宽度不应小于 4.0m,净高度不应小于 4.5m; 5 隧道与车行横通道或车行疏散通道的连通处,应采取防火分隔措施。 6 一、二、三类通行机动车的双孔隧道,其人行横通道或人行疏散通道应按下列规定设 置: 1 隧道应设置人行横通道或人行疏散通道。人行横通道间隔及隧道通向人行疏散通

隧道建筑防火设计要求标准版本

文件编号:RHD-QB-K2870 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 隧道建筑防火设计要求 标准版本

隧道建筑防火设计要求标准版本操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 针对公路隧道火灾特点,设计人员对隧道工程采取主动防火和被动防火两种措施。主动防火设计从防止火灾发生和对火灾采取及时扑救的角度出发,包括了内部空间布局、照明系统、通风系统、消防设备布置、火灾发生前后的火灾探测、报警、灭火及疏散系统,以及隧道的运营管理和灾情发生时的应急方案等一系列设计;被动防火设计主要是通过采取提高衬砌混凝土材料的耐火性能、喷涂防火涂料、安装防火板材等防火保护措施来保证隧道结构安全,使灾后只需进行简单的修护而不影响隧道的正常使用。 一、建筑结构耐火

(一)构件燃烧性能要求 为了减少隧道内固定火灾荷载,隧道衬砌、附属构筑物、疏散通道的建筑材料及其内装修材料,除施工缝嵌封材料外均应采用不燃烧材料。通风系统的风管及其保温材料应采用不燃材料,柔性接头可采用难燃烧材料。隧道内的灯具、紧急电话箱(亭)应采用不燃烧材料制作的防火桥架。隧道内的电缆等应采用阻燃电缆或矿物绝缘电缆,其桥架应采用不燃烧材料制作的防火桥架。 (二)结构耐火极限要求 用于安全疏散、紧急避难和灭火救援的平行导洞、横向联络道、竖(斜)井、专用疏散避难通道、独立避难间等,其承重结构耐火极限不应低于隧道主体结构耐火极限要求。 隧道内附属构筑物(如风机房、变压器洞室、水

隧道施工防火刚性规定标准版本

文件编号:RHD-QB-K7774 (管理制度范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 隧道施工防火刚性规定 标准版本

隧道施工防火刚性规定标准版本操作指导:该管理制度文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 为防止隧道工程施工过程中发生火灾事故,保证施工人员生命和国家财产安全,依据《中华人民共和国消防法》、公安部《关于建筑工程工地防火措施》和《地铁站防火规范详解》《铁路隧道施工技术安全规则》等法律法规、规程规范,特制定本规定。 第一条隧道工程施工防火是建筑工程施工现场安全防火的一个重要组成部分,应纳入整个隧道施工组织设计中进行统筹规划和实施。 第二条要加强隧道施工人员防火知识培训,增强施工人员防火意识,提高火灾自救能力。制定隧道防火工作预案,组建义务消防队,加强日常消防检

查。 第三条根据隧道工程地质、施工工艺和隧道施工设施配备、材料使用情况确定隧道防火重点部位和区段,设置警示标识,制定专项安全防火措施,确定防火责任人,落实防火责任。 第四条隧道内的电气线路应悬挂设置,接头应紧固可靠,电气线路的导电能力应与负荷相适应,严禁超负荷运行。 第五条对长、特大隧道内大型电器设备(变压器、高压开关柜、变配电室)设置安全防护栅栏,设置警示标识,每处配备4kg干粉灭火器1~2个,其四周2米内禁止放置易燃易爆物品。 第六条隧道内值班电工必须定期对电线路及用电设备进行安全巡视,发现安全隐患及时维修,并做好巡视维修记录备查。长、特长隧道内所用电缆宜采

城市隧道与地下工程发展的思考

城市隧道与地下工程发展的思考 摘要:随着我国城市经济的快速增长及人口的高度集中,城市隧道及地下工程的修建日益迫切。本文从国内城市隧道与地下工程发展的现状、特点出发,提出若干城市隧道及地下工程发展的建议,并阐述了对城市隧道及地下工程发展的相关问题的思考见解。 关键词:城市隧道;地下工程;发展;建议 0 引言 21世纪初,中国经济将持续稳定增长,城市化水平不断提高,再加上当前中国政府提倡建设资源节约型环境友好型社会,因此中国城市隧道与地下工程的开发利用将越来越得到重视。预计到2020年,中国将成为世界城市地下隧道开发利用的大国和强国。特别是对我国而言,开发利用城市隧道,对城市用地的节省,能源的节约,城市交通状况的改善,城市污染的减轻,城市空间容量的扩大,城市生活质量的提高等都有重要作用。 1 隧道与地下工程对城市发展的作用 由于人口的高度城市集中化,为缓解人口增长对城市环境的压力,修建各种城市隧道和地下工程在世界各国呈现急剧增长的态势。一般规模的城市,其煤气供应管道、排污、通信、电缆等必定是地下设施;在超过50万人口的大中型城市,除上述地下设施外,还同时发展了市区隧道交通、汽车地下线路及地下人行走道等的运输隧道;在人口过百万的特大城市,还有地下商场、地下文化娱乐设施、地下停车场及废物处置地等地下设施。据统计,在过去的30到40年间,人口超过50万的100多个城市修建或正要修建在地下运行的地铁、城市轨道或快速运输系统。[1]截止1999年,世界上约有70个城市建有地铁运输系统。从这个数据不难看出,在大城市,隧道的修建日益迫切,城市隧道和地下工程在整个国家运输系统和城市发展中,扮演着愈来愈重要的角色。 2城市隧道与地下工程发展特点与现状 2.1 城市隧道与地下工程发展特点 我国城市隧道及地下工程发展的主要特点是:第一、城市地下隧道的机械化施工水平有了显著的提高。在秦岭铁路隧道的修建过程中,引进了全断面隧道掘进机,标志着我国铁路隧道结束了钻爆法施工“一统天下”的局面。第二、困难地

12.建筑设计防火规范汇总表(城市交通隧道篇)

城市交通隧道篇 要点:1 单孔和双孔隧道应按其封闭段长度和交通情况分为一、二、三、四类,并应符合表12.1.2的规定。 备注:本数归于低等级 隧道内的地下设备用房、风井和消防救援出入口的耐火等级应为一级,地面的重要设备用房、运营管理中心及其他地面附属用房的耐火等级不应低于二级。 隧道内的变电站、管廊、专用疏散通道、通风机房及其他辅助用房等,应采取耐火极限不低于2.00h的防火隔墙和乙级防火门等分隔措施与车行隧道分隔。 通行机动车的双孔隧道,其车行横通道或车行疏散通道的设置应符合下列规定:1水底隧道宜设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔宜为1000m-1500m; 2非水底隊道应设置车行横通道或车行疏散通道。车行横通道的间隔和隧道通向车行疏散通道入口的间隔不宜大于1000m; 3车行横通道应沿垂直隧道长度方向布置,并应通向相邻隧道;车行疏散通道应沿隧道长度方向布置在双孔中间,并应直通隧道外; 4车行横通道和车行疏散通道的净宽度不应小于4.0m,净高度不应小于4.5m; 5隧道与车行横通道或车行疏散通道的连通处,应采取防火分隔措施。

条文解释:隧道与车行横通道或车行疏散通道的连通处釆取防火分隔措施,是为防止火灾向相邻隧道或车行疏散通道蔓延。防火分隔措施可采用耐火极限与相应结构耐火极限一致的防火门,防火门还要具有良好的密闭防烟性能。 单孔隧道宜设置直通室外的人员疏散门或独立避难所等避难设施。 隧道内地下设备用房的每个防火分区的最大允许建筑面积不应大于1500m2,每个防火分区的安全出口数量不应少于2个,与车道或其它防火分区相通的出口可作为第二安全出口,但必须至少设置1个直通室外的安全出口;建筑面积不大于500m2且无人值守的设备用房可设置1个直通室外的安全出口。 要点:2 四类隧道和行人或通行非机动车辆的三类隧道,可不设置消防给水系统。 消防给水系统的设置应符合下列规定: 1消防水源和供水管网应符合国家现行有关标准的规定; 2消防用水量应按隧道的火灾延续时间和隧道全线同一时间发生一次火灾计算确定。一、二类隧道的火灾延续时间不应小于3.0h;三类隧道,不应小于2.0h; 3隧道内的消防用水量应按需要同时开启所有灭火设施的用水量之和计算; 4隧道内宜设置独立的消防给水系统。严寒和寒冷地区的消防给水管道及室外消火栓应釆取防冻措施;当釆用干式给水系统时,应在管网的最高部位设置自动排气阀,管道的充水时间不宜大于90s; 5隧道内的消火栓用水量不应小于20L/s,隧道外的消火栓用水量不应小于30L/s。对于长度小于1000m的三类隧道,隧道内、外的消火栓用水量可分别为10L/s和20L/s。

交通大数据的应用

交通大数据应用分析 大数据时代是在现代科学技术跨越式发展的过程中逐步衍生而来,大数据诞生以来,世界各国高度重视,积极探索数据的来源、安全等问题,并将其应用于智能交通、智慧政府、智能金融等各行各业各个领域。[1]在政策方面,我国相继出台了《中华人民共和国国民经济和社会发展第十三个五年规划纲要》、《促进大数据发展行动纲要》等文件,明确提出要全面推进大数据的发展与应用;在实践方面,2016年以智慧城市为代表的“互联网+交通”项目在在全国范围内遍地开花,有效提升了城市的智能化水平。交通大数据是“互联网+交通”发展的重要依据,其发展及应用在宏观层面能为综合交通运输体系的“规、设、建、管、运、养”等提供支撑;在微观层面能够指导优化区域交通组织,如:优化交通信号、交通诱导、路况融合、规范停车场管理等。[2] 一、“互联网+交通”发展形势分析 根据高德地图发布的《中国“互联网+交通”城市指数研究报告》,2016年“互联网+交通”领域中数据开放、资源共建、政务智能服务、智能出行、交通拥堵、绿色出行、交通大数据发展势头强劲,七大热点紧跟时代前沿,符合国家政策导向,且与社会大众的生活就业息息相关。[3]在新常态新形势之下,结合国家“创新、协调、绿色、开放和共享”五大发展理念,“互联网+交通”领域将重点发展绿色、便捷、安全、经济、高效的大容量公共交通,一是通过借助“互联网+交通”领域的前沿技术,模拟城市交通运行情况,采取有效的诱导与控制措施,引导居民出行方式,缓解城市交通拥堵,提高公众出行效率与出行舒适度;二是通过政府与企业建立合作协调与资源共享机制,借助“互联网+交通”领域先进技术,共同致力于提升城市道路交通管理水平,充分实现城市道路体系的高效率利用。[4]实践证明,交通大数据是“互联网+交通”发展的关键支撑,是“互联网+交通”科学决策的重要依据,是构建智能出行系统,缓解城市交通拥堵,实现绿色出行的基础,因此,在“互联网+交通”背景下,不仅要关注交通大数据的发展方向与发展形势,如何解决交通大数据的来源、安全、储存及使用效率,充分发挥交通大数据的价值更为关键。[5]

隧道施工防火刚性规定

编号:SY-AQ-03349 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 隧道施工防火刚性规定 Rigid regulations on fire prevention in tunnel construction

隧道施工防火刚性规定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 为防止隧道工程施工过程中发生火灾事故,保证施工人员生命和国家财产安全,依据《中华人民共和国消防法》、公安部《关于建筑工程工地防火措施》和《地铁站防火规范详解》《铁路隧道施工技术安全规则》等法律法规、规程规范,特制定本规定。 第一条隧道工程施工防火是建筑工程施工现场安全防火的一个重要组成部分,应纳入整个隧道施工组织设计中进行统筹规划和实施。 第二条要加强隧道施工人员防火知识培训,增强施工人员防火意识,提高火灾自救能力。制定隧道防火工作预案,组建义务消防队,加强日常消防检查。 第三条根据隧道工程地质、施工工艺和隧道施工设施配备、材料使用情况确定隧道防火重点部位和区段,设置警示标识,制定专项安全防火措施,确定防火责任人,落实防火责任。

第四条隧道内的电气线路应悬挂设置,接头应紧固可靠,电气线路的导电能力应与负荷相适应,严禁超负荷运行。 第五条对长、特大隧道内大型电器设备(变压器、高压开关柜、变配电室)设置安全防护栅栏,设置警示标识,每处配备4kg干粉灭火器1~2个,其四周2米内禁止放置易燃易爆物品。 第六条隧道内值班电工必须定期对电线路及用电设备进行安全巡视,发现安全隐患及时维修,并做好巡视维修记录备查。长、特长隧道内所用电缆宜采用非延燃电缆和电线。 第七条严格隧道内施工动火的监控。隧道内确需进行明火施工或进行电、气焊时,要严格按照安全操作规程操作,划定安全区域,清除其四周10米内的一切易燃易爆物品。当确需立体交叉动火作业时,应用非燃烧材料对易燃、可燃材料进行隔离,并设专人负责监视和安全防护。 第八条瓦斯隧道施工必须按有关施工规定进行。在隧道内用火必须进行书面审批,未经批准严禁用火。用火作业前认真对隧道内瓦斯浓度进行检测,在确认绝对安全并在专职安全技术人员检测、

地下隧道结构抗震分析综述

摘要: 本文综述了地下隧道结构的地震反应特性和抗震分析的基本方法,简要介绍了目前国内外地下隧道结构抗震研究的现状、各种理论及实用分析方法以及今后的一些发展动态,并就各种分析方法作了简单的比较分析。 关键词: 地下隧道结构抗震分析地震响应相互作用 1.前言 随着城市化程度的不断提高,城市规模的不断扩大,城市交通问题日益成为制约城市发展的障碍,因此开发地下空间来解决城市的交通问题无疑显得越来越重要了,而地下隧道无疑是最主要的解决手段之一。 目前,我国的许多大城市都已建有地下隧道交通网,如北京、上海、天津、广州、深圳,同时,全国还有二十几个城市在进行这方面的规划。值得注意的是许多地下隧道结构所处地区都位于地震频发地带,因此地下隧道结构的抗震设计是个必须面对的问题。 过去人们普遍认为地下构造物受周围土体约束,在地震时随其一起运动,地下结构遭受破坏的比例很低,所以除特殊情况外,一般认为地震对地下结构的影响很小。然而近几年世界范围内发生的一系列大地震中,不少地下结构遭受破坏,如1995年的日本阪神地震。这教训了人们[1]:随着对地下空间大规模的开发和利用,大都市发生强烈地震时,地下隧道结构周围地基变形很大,这可能使结构的一些薄弱环节遭受地震破坏从而给隧道结构的整体性能造成极大的影响。 因此在地震作用下尤其是在强震作用下,地下隧道结构的抗震设计分析已经成为地震工程中一个十分重要的问题。而目前国内外现有的抗震设计规范中关于这方面的抗震设计条文大都十分简略,难以适应强震区地下隧道建造的发展。这就使得地下隧道结构抗震设计的研究成为十分必要的工作。 2.地下隧道结构的震害及地震反应特点 为了更好的分析地下隧道结构的地震响应,先考察在地震灾害史上,地下结构的所遭受的震害情况。以下是一些的相关震害记录[2]:ASCE在1974年公布了Los Angeles地区的地下结构在1971年的San Fernando地震中所受到的震害;JSCE于1988年总结了日本一些地下结构(包括一条沉管隧道)在震害中的性能;Duke and Leeds(1959),Stevens(1977),Dowding and Rozen(1978),Owen and Scholl(1981),Sharma and Judd(1991),Power et al.(1998)及Kaneshiro et al.(2000)等学者记录了在历次震害中地下结构的破坏情况。其中Power等(1998)共列举了217例震害实例。在这些震害中有不少是关于地下隧道结构的破坏,而1995年的日本阪神大地震则是现代地下隧道结构(如地铁)首次遭到大规模的破坏(Nakamura et al.,1996)。 从这些震害记录中可以得出地下隧道结构的一些震害特点[3]:整体上地下隧道结构的抗震性能优于地面结构(王明年等曾从地下结构动力学模型出发论证了地下结构的减震原理[4]);结构震害随其埋深的增加有所减少;结构周边土体的性质对其抗震性有重要影响,如建在岩基上的隧道结构要比软基上的耐震,沿线地质条件变化较大区域的结构震害较严重,结构在穿越地质不良地带(断层、砂土液化区)也更易于遭受震害;隧道加衬或注浆有助于提高其抗震性能;地下隧道结构的破坏程度同震级、震中距及强震持续时间等密切相关;地

相关主题
文本预览
相关文档 最新文档