当前位置:文档之家› 1017 宝钢汽车板夹杂缺陷的分析与控制

1017 宝钢汽车板夹杂缺陷的分析与控制

1017 宝钢汽车板夹杂缺陷的分析与控制
1017 宝钢汽车板夹杂缺陷的分析与控制

2016年(第十九届)全国炼钢学术会议论文集

宝钢汽车板夹杂缺陷的分析与控制

林顺财

(宝山钢铁股份有限公司制造管理部,上海201900)

摘要:针对用户冲压开裂零件,进行了检测分析,发现导致开裂的主要原因是夹杂缺陷。对夹杂缺陷炼钢过程进行调查与分析,得出炼钢板坯夹杂主要与过程氧、中间包过热度、浇铸拉速、中间包吨位等因素有关。研究发现,炼钢过程氧高,是板坯氧化物夹杂的主要来源;浇铸过程过热度低、中间包吨位低、生产拉速高均不利于夹杂物上浮,从而导致板坯夹杂缺陷增多。通过制定炼钢各工序过程氧相应控制基准、优化浇铸过热度、中间包吨位及浇铸速度等措施;可以有效控制板坯夹杂缺陷。

关键词:板坯夹杂质量控制

Analysis and Control for Inclusion Defectson Automobile sheet of Baosteel

Lin Shuncai

(Manufacture Management Department, Baoshan Iron&steel Co.,Ltd., Shanghai 201900, China) Abstract: The Cracks stamping parts for the user were analyzed, the main cause of cracking is inclusions defects.The process of the steelmaking for inclusion defect were investigated and analyzed, the research showed that the slab inclusions defects were main correlated with total oxygen in steelmaking process, tundish superheat, tundish tonnage and casting speed. The study found that oxygen of the steelmaking process, is the main source of inclusions; the low tundish superheat and tundish tonnage , high casting speed were not conducive to the inclusion float, which caused inclusions defects increased in the slab.Through formulated the appropriate control standards oxygen of steelmaking process , optimized the superheat casting, improved the tundish tonnage and casting speed ; the inclusion defects of slab were controlled effectively.

Key words: Slab, inclusion defects, quality control

1 前言

随着国内汽车工业的迅速发展, 对高质量汽车板的需求量大幅增加,国内大型钢厂大都已具备生产汽车板的设备与工艺,如何在量化生产的同时确保用户端生产质量,成为各钢厂重点关注的问题之一。连铸过程中各种夹杂物,由于各种原因被未充分上浮, 残留在板坯内部及表皮位置,成为汽车板冲压开裂的主要原因之一。本文主要对冷轧汽车板表面典型的夹杂缺陷进行了分析,着重对缺陷板坯的生产过程进行了调查, 初步探讨了汽车板夹杂缺陷产生原因及其防控措施。

2 汽车板夹杂的介绍及分析

某用户端汽车板冲压开裂的缺陷外观如图1所示,缺陷样板的表面及截面SEM形貌及能谱分析结果分别如图2-3所示。分析结果显示,在基板的开裂缩颈位置发现氧化铝内生夹杂颗粒,推断该开裂缺陷由氧化铝夹杂引起。

图1 缺陷外观

Fig. 1 The appearance of defects

图2 缺陷表面SEM形貌及EDS分析

Fig. 2 The SEM micrographs and EDS analysis of surface about defects

图3 缺陷截面SEM形貌及EDS分析

Fig. 3 The SEM micrographs and EDS analysis of section about defects

板坯中的夹杂物,经后工序热轧、冷轧轧制减薄后还未显露,在冲压过程中,钢板进一步拉延减薄,浅表层中的细小夹杂物未能与钢基体同步变形延伸,在夹杂部位易造成应力集中,导致零件出现缩颈,从而出现开裂现象。

3 工艺分析及改进

根据以上分析可以得出,导致汽车板冲压开裂的的主要原因是AL2O3夹杂缺陷;针对上述原因,对缺陷对应板坯的炼钢生产过程进行了跟踪与分析,找出影响板坯异常的内在原因,并提出了改进措施。

3.1炼钢过程总氧控制

对于汽车板而言,钢材的纯净度反映了钢的总体质量水平,也是钢材内在品质的保证。炼钢纯净度对

夹杂物的形成有着至关重要的影响,而钢液中氧含量是钢水纯净度的重要指标。一般认为冷轧深冲汽车板用钢在炼钢生产过程中用铝脱氧,钢液中的溶解氧与钢中溶解的铝元素互相平衡,其含量很低且波动较小,结合氧则以夹杂物的形式分布在钢液中,因此全氧含量可以代表钢液中夹杂物的水平[1-2]。

控制板坯夹杂物的途径首先是减少冶炼及浇铸工艺操作过程中夹杂物的产生和外来夹杂物对钢水的污染,因此转炉冶炼终点时的工艺参数需要重点控制。为了减少夹杂物的数量,需从源头上降低转炉停吹氧含量,现场调查发现,好的底吹搅拌效果、采用炼钢终点自动控制技术,提高终点控制精度、减少过吹以及后吹、出钢挡渣等措施可以有效控制转炉冶炼终点时钢水氧含量。

相对于转炉停吹氧,RH精炼的OB量及脱碳终游离氧的控制更为重要。对于转炉停吹氧偏高炉次,夹杂物在RH处理工序,部分可以上浮,以减对钢液的危害。但受制于钢包温降及生产节奏的影响,如果RH脱碳终游离过高,加铝脱氧后生产的夹杂物上浮不充分,是导致板坯内生夹杂增多的主要原因。对现场数据分析发现,RH脱碳终游离氧与后工序夹杂(渣)缺陷有较强的关系,如图4所示。

图4 RH脱碳终游离氧与后工序夹杂(渣)缺陷的对应关系

Fig. 4 The relationship between the free oxygen in the end of RH decarburization and inclusions (slag) defect

有关研究发现,RH工序OB升温会使得钢渣全体系夹杂物数量增加,若生成的夹杂物数量过多则会影响钢渣夹杂物的饱和度,从而影响精炼后期夹杂吸附能力。因此降低或避免精炼过程吹氧升温是提高钢水纯净度的基础[3],这在现场跟踪过程中得到有效验证。此外,现场分析中还发现,在钢液温度和现场生产允许的条件下,适当延长精炼纯循环时间也有利于钢液纯净度的提高。

因此,针对汽车板冲压开裂的敏感钢种,需对炼钢各工序的过程氧进行有效管理;并结合后工序缺陷发发生情况,制定各工序相应的控制标准,确保炉次过程氧得到有效管控。

3.2 浇铸过程中间包参数控制

对于炼钢工序,如何保持精炼后钢水的纯净度是连铸工序中需要解决的问题,中间包各参数的控制对钢的纯净度影响很大。现场研究表明,为了减少中间包夹杂物或者防止夹杂物进入结晶器,主要可以采取如下措施:一是提高钢种浇铸过热度,改善钢液流动性,有利于夹杂物上浮;同时在确保钢液面一定的深度的条件下,可以适当增加中间包的容量,延长了钢液在中间包的停留时间,可以有效促使夹杂物上浮、分离并排除。二是确保浇铸过程中中间包的最小吨位,防止中间包钢水液面低于临界值;现场实验表明,在连铸过程中,当中间包钢水吨位较小,钢水高度较低时,在中间包内的钢水表面会形成漩涡,将一些液态或固态的覆盖剂及脱氧产物卷入钢液,这些夹杂物在上浮的过程中被凝固坯壳所捕获,成为板坯夹杂物的主要来源之一。

针对上述问题,炼钢结合冲压开裂敏感钢种,从中间包过热度、浇铸过程中间包最小吨位等方面,制定了相应管控标准;为夹杂物上浮、分离并排除创造了有利条件。

3.3 浇铸拉速的控制

浇铸过程的拉速控制对板坯的夹杂物控制有重要影响。现场研究表明,汽车板生产过程中要避免浇铸拉速的异常波动。目前存在的主要问题是开浇、终浇、换包及快换水口等非稳态浇铸阶段由于拉速变化引起卷渣;此外,Al2O3粘结堆积在浸入式水口,在吹氩及拉速波动的双重作用下,Al2O3极易卷入钢液中,形成板坯夹杂物。

针对此情况,对钢种的拉速进行了管控,制定了相应控制标准。同时,对拉速波动异常的板坯进行了改钢处理,以确保送后工序的板坯质量。

通过上述相关措施的实施之后,有效控制了板坯夹杂物水平,用户端冲压开裂情况得到有效改善。

4 结论

(1)导致用户端汽车板冲压开裂的的主要原因是AL2O3夹杂缺陷;主要来源于板坯夹杂物。

(2)炼钢过程氧偏高是导致板坯夹杂物增多的主要原因,对炼钢各工序氧含量制定相应管控标准,可以有效降低后工序夹杂(渣)缺陷发生率。

(3)中间包过热度及浇铸过程中间包最小钢水量,对夹杂物的上浮有重要影响。可以通过适当提升钢种过热度、规范浇铸过程中间包吨位管理等措施,降低板坯夹杂物数量。

(4)现场生产过程中稳定浇铸状态、避免拉速异常波动, 对提高板坯质量具有重要意义。

参考文献

[1] 崔衡,田恩华,陈斌,等.RH真空精炼后IF钢镇静工艺的洁净度研究[J].北京科技大学学报,2014,36(1):32-35.

[2] 高攀,田志红,崔阳,等.IF钢非稳态浇铸铸坯洁净度分析[J].钢铁,2012,47(7):31-35.

[3] 张彩东,杨晓江,王峰,等.唐钢RH钢水洁净度分析与研究[J].中国冶金,20113,23(8):9-13.

纯电动汽车整车控制器(TAC)

纯电动汽车整车控制器(TAC) 项目介绍: 纯电动汽车整车控制器对新能源汽车的动力性、安全性、经济性、操纵稳定性和舒适性等都有重要影响,它是新能源汽车上的一种关键装置。在车辆行驶过程中,整车控制器通过开关输入端口、模拟量转换模块、CAN总线等硬件线路采集路况信息、驾驶员意图、车辆状态、 设备运行状态等参数,依托高速运行的 CPU和控制端口来执行预设的控制算法和管理策略,再将指令和信息等通过 CAN总线、开关输出端口等对动力系统的执行部件进行实时的、可靠的、科学的控制,以实现车辆的动力性、可靠性和经济性。 其硬件结构框图如图一所示。

tihJTJt 川“ J人 整车控制器实物图如图二所 示。 it电" * st 电 M U 电柢第iC 4- if 邨 ESlh 卜 [? ■: *■ DC IX*科电乳 ■ 1 .^ptt'AN :■' - 彝竝 tt」 7%谢洩M!* WI KX T.7*帀小

性能指标: 1)工作环境温度:-30 C—+80C 2)相对湿度:5%~93% 3)海拔高度:不大于3000m 4)工作电压:18VDC —32VDC 5)防护等级:IP65 功能指标: 1)系统响应快,实时性高 2)采用双路 CAN总线(商用车 SAE J1939协议) 3)多路模拟量采样(采样精度10位);2路模拟量输出(精度 12位)4)多路低/高端开关输出 5)多路I/O输入 6)关键信息存储 7)脉冲输入捕捉 8)低功耗,休眠唤醒功能 该项目使用的INFINEON 的物料清单:

整车控制器(VMS, vehicle management Syetem ),即动力总成控制器。是整个汽车的核心控制部件,它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后, 控制下层的各部件控制器的动作,驱动汽车正常行驶。作为汽车的指挥管理中心,动力总成控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网 络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。因此VMS的优劣直接影响着整车性能。 纯电动汽车整车控制器 (Vehicle Controller)是纯电动汽车整车控制系统的核心部件,它对汽车的正常行驶,再生能量回收,网络管理,故障诊断与处理,车辆的状态与监视等功能起着关键的作用。 与各部件控制器的动态控制相比,整车控制器属于管理协调型控制。 整个车辆系统采用一体化集成控制与分布式处理的车辆控制系统的体系结构,各部件都有 独立的控制器,整车控制器对整个系统进行能量管理及各部件的协调控制。为满足系统数 据交换量大,实时性、可靠性要求高的特点,整个分布式控制系统之间采用CAN总线进 行通讯。 整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主 芯片的输出与Flash存储器和RAM存储器的输入相连。 整车控制器通过 CAN总线接口连接到整车的 CAN网络上与整车其余控制节点进行信息交换和控制。 控制器硬件包括微处理器、CAN通信模块、BDM调试模块、串口通信模块、电源及保护 电路模块等。微处理器选用了Motorola公司专门为汽车电子开发的MCgS12,它具有运 算速度快和内部资源与接口丰富的特点,适合实现整车复杂的控制策略和算法。CAN通信 模块符合CAN2.0B技术规范,采用了光电隔离、电源隔离等多项抗干扰设计;BDM调试模块用于实时对控制程序进行调试、修改;串口通信模块用于对控制系统的诊断和标定;电源模块进行了二级滤波的冗余设计,保证控制器在车载12V系统供电情况下正常工作,并具短路保护功能。 CAN,全称为"Controller Area Network ”,即控制器局域网,是一种国际标准的,高性价的现场总线,在自动控制领域具有重要作用。CAN是一种多主方式的串行通讯总线,具有较高的实时性能,因此,广泛应用于汽车工业、航空工业、工业控制、安全防护等领域。 决策层控制单元是车辆智能化的关键,其收集车辆运行过程中的信息,并根据智能算法的决 策向物理器件层控制单元发送命令;动力源控制单元负责调节动力源系统部件以满足决策层控制单元的命令要求;驱动/制动控制单元则调节双向变量电机和能耗制动系统实现车辆的各种工况,如驱动控制、防抱制动等。 整车控制器功能需求: 整车控制器在汽车行驶过程中执行多项任务,具体功能包括:(1)接收、处理驾驶员的驾驶

基于纯电动汽车的整车控制器分析

基于纯电动汽车的整车控制器分析 发表时间:2019-09-12T11:46:14.157Z 来源:《基层建设》2019年第17期作者:丘东海[导读] 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。中兴智能汽车有限公司 519040 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。随着纯电动汽车的快速发展,整车电控系统成为一种非常重要的应用技术。纯电动汽车整车控制对整车控制系统的设计开发具有较强的指导意义。关键词:纯电动汽车;整车控制器;分析引言: 整车控制系统是纯电动汽车电控系统的三大核心技术之一,纯电动电控系统与传统汽车的控制系统相比,纯电的汽车电控系统的控制单元数量与复杂程度高出很多。电控系统是保证纯电动汽车整车功能集成和优化的核心单元,为保证纯电动汽车各部件系统在最佳工况下能够协调运行,需要制定相应的控制策略。纯电动汽车电控系统主要包括整车控制系统(简称VCU)、电池管理系统(简称BMS)、电机控制系统(简称MCU)、辅件控制系统等环节。整车控制系统确保各系统之间要协调工作,方能保证整车的稳定性和安全性,对纯电动汽车的发展意义重大。 一、整车控制系统的介绍 整车控制系统主要包括整车控制器、CAN总线通讯网络以及驾驶员意图解析系统、信息显示系统、动力驱动系统、电机控制系统、辅件控制系统等。作为纯电动汽车的核心部分,控制各个系统之间的相互配合。通过接收其他控制器发出的信号,比如驾驶员控制指令信息、加速踏板信息、制动踏板信息等,然后通过特定算法来处理这些信号,通过CAN总线通讯网络输出信号给相应的下层控制器去执行对应的动作。 整车控制策略作为VCU重要的软件部分。一套成熟、可靠的整车控制策略须包括以下部分:驾驶员解析控制策略、驱动控制策略、上下电管理控制策略、扭矩解析控制策略、辅件控制策略、能量回收控制策略、安全控制策略、故障诊断控制策略等。要能够符合驾驶员的操作需求,具备智能化的安全控制,从而保证车上人员的安全,提升汽车性能,提高纯电动汽车的续驶里程。 二、整车控制器的功能 VCU作为上层控制单元负责协调动力系统各个部件的运行,根据驾驶员操作信号进行驾驶意图解析、根据各部件和整车工作状态进行整车时序逻辑控制、安全管理和能量分配决策,向各部件控制器发送控制指令,并向仪表等显示设备输出整车电控系统状态信息。各部件控制器根据其指令控制相应部件,驱动汽车正常行驶。概括起来整车控制系统就是实现:(1)上下电管理,(2)驾驶员意图识别,(3)动力系统的扭矩解析控制,(4)能量回收管理,(5)辅件控制管理,(6)整车网络管理,(4)车辆状态监视和故障诊断及保护。整车控制器技术水平直接影响整车的动力性、经济性及安全性,是电动汽车的关键技术。 三、整车控制器的组成 VCU作为纯电动汽车控制系统最核心的部件,其承担了数据交换、安全管理、驾驶员意图解析、能量流管理的任务。VCU的功能划分如图1所示。 (1)数据交换层。该层对直接馈入整车控制器的物理量信息(如驾驶员的操作反馈的信息和其它执行部件的工作状态信息)进行采样处理,并通过I/O、D/A和PWM,提供对显示单元、继电器等的控制信号。(2)安全故障管理层车辆出现故障时,故障只体现在数据交换层。在检测出故障后,该层会做出相应的处理,在保证车辆安全性的条件下,给出执行部件可供使用的范围,以尽可能满足驾驶员的驾驶意图。(3)驾驶员意图解释层驾驶员的所有与驾驶操作相关的操作信号都直接进入整车控制器,整车控制器对采集的信息进行处理分析,计算出驱动系统的目标转矩和车辆行驶时的需求功率来实现驾驶员的驾驶意图。(4)能量流管理层,该层的主要工作是能量源之间进行需求功率分配。 四、整车控制器的硬件设计 (1)微控制器模块:本设计采用主从芯片设计,主从芯片之间进行校验,确保主芯片工作状态正常,主控制芯片选用SPC5606,是整车控制器的控制核心,包括主控制芯片(微控制器)及其外围电路,负责数据的运算及处理,也是控制方法实现的载体;(2)电源模块:为各输入和输出模块提供电源,并对蓄电池电压进行监控,与微控制器相连;(3)信号处理模块:用于模拟和数字量输入信号的调理,包括模拟量信号处理和数字量信号处理,其一端与传感器或开关相连,另一端与微控制器相接; (4)功率驱动模块:用于驱动多个继电器或系统状态指示灯,包括低端驱动和PW M驱动两部分,与微控制器通过I/O相连,另一端与被控继电器(低端驱动)或指示灯(PW M驱动)相接,微处理器可通过SPI总线进行故障诊断;(5)通讯模块:整车控制器与其他设备相连的接口,包括两路CAN总线、一路FlexRay总线、一路LIN总线及一路RS232总线,其中CAN总线是整车控制器最重要的对外通讯接口。整车控制器的整体硬件框图,如图2所示。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 发表时间:2019-07-05T11:27:03.790Z 来源:《电力设备》2019年第4期作者:王坚 [导读] 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。 (柳州五菱汽车工业有限公司广西柳州 545007) 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计 (一)整车控制器结构设计 整车控制器的硬件结构根据其基本的功能需求进行设计,如图1所示。支持芯片正常工作的微控制器最小系统是整车控制器的核心,基础的信号处理模块,CAN通信与串口通信组成的通信接口模块,以及LCD显示等其他模块分别作为它的各大功能模块。 图1 整车控制器硬件结构图 (二)整车控制器硬件设计 从功能上可以把整车控制器分为6个模块。 1)微控制器模块:本设计选用美国德州仪器公司TI的数字信号处理芯片TMS320F2812为主控芯片,负责数据的运算及处理,控制方法的实现,是整车控制器的控制核心。此芯片运算速度快,控制精度高的特点基本满足了整车控制器的设计需求。TMS320F2812的最小系统主要由DSP主控芯片、晶振电路、电源电路以及复位电路组成。 2)辅助电源模块:由于整车控制器的控制系统中用到多种芯片,所以需要设计辅助电源电路为各个芯片提供电源,使其正常工作,因此输出电平有多种规格。采用芯片LM317、LM337可分别产生+5V和-5V的供电电压。 3)信号调理模块:输入整车控制器的踏板信号是1~4.2V模拟电压信号,TMS320F2812的12位16通道的A/D采样模块输入的信号范围为0~3.0V,因此需要对踏板输入的模拟电压信号进行相应的调理运算,以满足DSP的A/D采样电平要求。选用德州仪器的OPA4350轨至轨运算放大器,在输入级采用RC低通滤波电路与电压跟随电路以滤除干扰信号,减小输入的模拟信号失真。开关信号先经RC低通滤波电路滤除高频干扰,再作为电压比较器LM393的正端输入,电压比较器的负端输入接分压电路,将LM393的输出引脚外接光耦芯片,在起到电平转换作用的同时,进一步隔离干扰信号,提高信号的安全性与可靠性。 4)通讯模块:TMS320F2812具有一个eCAN模块,支持CAN2.0B协议,可以实现CAN网络的通讯,但是其仅作为CAN控制器使用。选用3.3V单电源供电运行的CAN发送接收器SN65HVD232D,其兼容TMS320F2812的引脚电平,用于数据速率高达1兆比特每秒(Mbps)的应

最新电动汽车电池管理系统应用与分析

研修班毕业论文 电动汽车电池管理系统应用与分析 授课老师:邓亚东 专业:车辆工程 姓名:石琪 完成日期:2017年6月15日

摘要 随着社会的发展以及能源、环保等问题的日益突出,纯电动汽车以其零排放,噪声等优点越来越受到世界各国的重视,被称作绿色环保车。作为发展电动车的关键技术之一的电池管理系统(BMS),是电动车产业纯的关键。,以锂电池为动力的电动自行车、混合动力汽车、电动汽车、燃料电池汽车等受到了市场越来越多的关注。我国对电动车的发展极为重视,早在1992年就把电动车的开发发展列入国家的“八五”重点科技攻关项目,对电池管理系统以及充电机系统进行了长期深入的研究开发,在BMS方面取得很大的突破,与国外水平也较为接近,研制产品在纯电动和混合动力电动车上得到大量使用。但电池管理技术还并不成熟,电动汽车的发展及产业化,对动力蓄电池管理系统将具有巨大的市场需求,同时技术上也将提出更高的要求。 关键词:BMS 纯电动汽车动力电池锂电池 can通讯单片机

Abstract with the oil price, the energy shortage, the increasingly serious urban environment pollution, an alternative to oil development of new energy use more and more attention by governments. In the new energy system, battery systems is one of the indispensable important component. In recent years, with the lithium battery powered electric bicycle, hybrid cars, electric vehicles, fuel cell automobile, by the market more and more attention. The development of electric vehicle in China, a great importance in early 1992, the development of the electric car in national development of "five-year" key torch-plan projects of battery management system, and charging machine system for the long-term in-depth research development, in BMS gained great breakthrough, and foreign level also approaches, the research products in pure electric and hybrid electric vehicle got a lot of use. But battery management technology is still not mature, electric vehicles and the development of industrialization of motive battery management system, with the huge market demand, but technology will also put forward higher request. Keywords:BMS pure electric vehicle power battery lithium batteries can communication microcontroller

2019年国内高端冷轧汽车板龙头钢企宝钢股份的核心优势及核心产品需求分析

2019年国内高端冷轧汽车板龙头钢企宝钢股份的核心优势及核心产品需求分析

公司概况:国内钢铁龙头,汽车板市占率高 (5) 公司简介:师从日本,全国最现代化钢企 (5) 产能产品:国内高端冷轧汽车板龙头钢企 (6) 粗钢产能:合并口径4898万吨,权益口径4631万吨 (6) 下游需求:覆盖多个下游领域,汽车是主要应用场景 (8) 定价机制:基础产品月度定价跟随市场,附加值加价 (11) 财务分析:现金分红率50%,分红稳定性强 (13) 钢铁行业景气度决定公司业绩弹性 (13) 换股吸收武钢股份,降本仍有空间 (14) 搬迁增加资本开支,削弱分红能力 (15) 钢铁行业:国内卷板扩张近尾声,关注印度 (16) 东南亚、南亚产能增长,板材为主 (16) 国内卷板产能增长,2019年近尾声 (16) 行业兼并重组方兴未艾,关注质变 (17) 核心产品需求:高端汽车板具备一定成长性 (18) 国内汽车将逐渐从高速成长过渡到低速增长 (18) 车用高端钢材比例偏低,需求仍有上行空间 (18) 公司核心优势:依靠汽车板技术优势外延扩张 (20) 冷轧汽车板市占率60%,国内第一 (20) 四大生产基地,空间布局合理 (20) 战略定位汽车材料综合供应商 (20) 同业对比:公司汽车板制造技术领先 (22) 汽车板产能产线对比 (23) 汽车钢产品布局对比 (26) 汽车钢产品性能对比 (27) 一体两翼,打通大宗商品产业链 (29) 工业软件龙头宝信软件,推动智造 (29) 欧冶云商,联通钢铁与大宗商品 (31) 从钢铁生态圈到大宗商品生态圈 (34) 盈利预测、估值: 首次覆盖给予公司“买入”评级 (35) 预计公司短期面临业绩下滑压力 (35) 首次覆盖给予公司“买入”评级 (38) 风险提示 (39)

纯电动汽车整车控制系统教案

课程单元教学设计任课教师:科目纯电动汽车整车控制系统检修授课班级:

一、知识一、任务导入 假如你是北汽新能源4S店的一名车辆维修人员,需要对某待维修 的车辆进行整车状态参数读取,请问你会正确使用故障诊断仪进行 数据流读取吗? 二、容及过程设计 教师活动 1、电动汽车整车控制系统的作用 1.1控制系统的基本概念 控制系统一般包括传感器、控制器和执行元件。传感器采集信 息并转换成电信号发送给控制器,控制器根据传感器的信息进行运 算、处理和决策,并向执行元件发送控制指令以完成某项控制功能。 1.1.2北汽EV160纯电动汽车整车控制系统的组成 北汽EV160纯电动汽车的整车控制系统结构如图所示,按照各 部件的功能,可以将整车控制系统分为动力电池系统、充电系统、 驱动电机系统、传动系统、电动助力转向系统、制动系统等。该车 的主要高压部件,都集中在了汽车前机舱,如电机控制器、高压控 制盒DC/DC变换器、车载充电机、驱动电机等。 教 师: 引 出 话 题 教 师: 板 书、 展 示、 解 说、 提 问 提 问、 启 发 比 喻 多 媒 体 展 示、 互 动 步骤教学容教师、 学生 活动 教 学 方 法 与 手 段 时 间 分 配

二、 技能 一、技能训练项目及组织 2、实训组织 1)分两组,每次一组组,其他学生完成布置作业 2)实习、学习指导(教师分工 (1)一位教师负责实训室进行操作示 (2)另一位教师负责指导完成相关学习任务 3、使用设备 教师: 示演 示

4、安全和纪律要求 1、穿好工作服、讲究仪容仪表 2、服从安排,遵守纪律,讲究秩序 3、不允许擅自乱动设备 5、学习评估 按学校要求评估

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

高强板市场研究报告

高强板报告

高强板行业的界定和分类 一、行业定义、执行标准 高强板又称高强度板,低合金高强板,高强度焊接板。主要特点是强度大,屈服点高。高强板大致分为:Q390、Q420、Q460、Q500、Q550和Q690,而且不同钢厂,厂标也不一样,如安钢的AH60也叫Q460,武钢如:WH HG60。 高强板AH60,Q460:该产品广泛用于各类工程机械、如矿山和各类工程施工用的钻机、电铲、电动轮反斗车、矿用汽车、挖掘机、装载机、推土机、各类起重机、煤矿液压支架等机械设备及其它结构件。 Q390 Q420 Q460 AH60 AH70DB的标准为:GB/T1591-94 Q550和Q690的标准为:GB/T2970 GB/T16270

第一章高强板行业销售情况我国高强板行业受下游需求增长影响,2005-2007年保持增长态势,2008年受金融危机影响,我国高强板产品增速放缓,许多企业开工率不高,产品库存增加,但就整个行业来说,仍保持在一个高位。 2006年我国高强板市场销售量为35万吨,同比增长14.03%;2007年我国高强板行业销售量为48万吨,相比2006年增长37.57%;2008年我国高强板行业销售量为53万吨,较2007年增长11.16%。 图1.2005-2008年高强板行业销售量及增速

第二章高强板行业生产情况2006年我国高强板行业生产总量为40万吨,同比增长16.68%;2007年我国高强板行业生产总量为53万吨,相比2006年增长31.46%;2008年高强板行业生产总量为63万吨,相比2007年增长17.70% 图2.2005-2008年高强板行业生产总量及增速

宝钢新日铁汽车板有限公司培养自主型员工队伍工作指南

宝钢新日铁汽车板有限公司 培养自主型员工队伍工作指南 目录 一、总则............................................................................................... 错误!未定义书签。 二、自主型员工的定义和内涵?错误!未定义书签。 1、尽心尽责完成本职工作............................................................ 错误!未定义书签。 2、具有发现本岗位或相关区域问题,并主动加以解决的能力?错误!未定义书签。3、具有以最高水平为目标而持续改进、追求完美的精神?错误!未定义书签。 三、自主型员工队伍培育的核心要素............................................. 错误!未定义书签。 1、员工的意愿................................................................................. 错误!未定义书签。2、员工的能力. (4) 3、企业的资源条件(体系、机制、制度、氛围等)?错误!未定义书签。 四、自主型员工队伍培育的管理理念和行为准则........................ 错误!未定义书签。 1、原点思维?错误!未定义书签。 2、PDCA+认真.............................................................................. 错误!未定义书签。 3、“八个人”工作机制?5 4、管理重心下移 (5) 5、尊重且信任员工?错误!未定义书签。 6、从管理本质出发,从细节入手................................................... 错误!未定义书签。 7、舍得花时间沟通 ........................................................................ 错误!未定义书签。 8、问题导向而不是责任导向........................................................ 错误!未定义书签。 9、持之以恒,不急于求成?6 10、布置工作的“三步法”?错误!未定义书签。 11、“三有推定”法则.................................................................... 错误!未定义书签。 五、自主型员工队伍培育的组织体制?错误!未定义书签。 六、自主型员工队伍培育的主要思路和方法?错误!未定义书签。 (一)营造氛围,激发意愿?错误!未定义书签。 (二)注重培养,提升能力................................................................ 错误!未定义书签。 (三)搭建平台、展现价值?错误!未定义书签。

电动汽车整车控制系统介绍

电动汽车整车控制系统介绍 本文主要探讨纯电动汽车整车控制系统功能及研发流程。根据用途,整个电气系统可分为动力系统、能源系统、底盘电子控制系统、照明指示系统、仪表显示系统、辅助系统、整车综合控制系统、空调系统和舒适性安全系统等子系统。其中很多功能模块都需要和整车综合控制系统相关。整车电气系统列出如表1所示。 整车综合控制系统根据驾驶员的操作指示(油门、刹车等),综合汽车当前的状态解释出驾驶员的意图,并根据各个单元的当前状态作出最优协调控制。 1 整车控制器系统配置 整车控制器与整车其他电气系统连接如图1所示。整车控制器通过CAN总线与电池ECU、电机ECU、电源分配ECU、ABS系统、中控门锁、仪表显示系统连接。与其余的电气系统通过IO端口连接(也可使用CAN通讯)。下面分别对各电气单元的功能要求分别叙述。 1.1 动力系统提供整车的动力输出,其核心是驱动电机和电机驱动ECU 电机驱动ECU通过CAN总线与整车综合控制器通讯。应能提供电机转速、转矩、功率、电压、电流、水温、工作模式等参数。并应该能接受整车控制器发来的控制命令。 1.2 能源系统包括电池、电池管理单元和电源分配系统 与整车控制器通讯的有电池管理ECU和电源分配ECU。 电池管理ECU对电池进行充放电管理及保护。它应能提供电池组总电压、电流、单体电池电压、温度、剩余电量、电池健康状态、故障类型等信息。 电源分配ECU应能提供各个子电源的电压、电流和工作温度以及故障类型等信息。 1.3 ABS系统应能提供各个车轮的转速、液压系统状态、各个制

动阀的状态以及自身的工作状态等信息 1.4 中控门锁,应提供各车门状态等信息 1.5 仪表显示系统,应向整车控制系统提供所显示信息的全部内容 1.6 照明指示系统,可以通过CAN总线来控制,也可以通过IO来指示照明指示系统的运行状态 1.7 转向助力、制动助力、变速箱需提供档位位置、液压压力、工作状态等信息 可以是简单的开关量也可以用CAN总线通讯。 1.8 驾驶员的油门踏板和制动踏板经信号调理后接入到整车控制器内 2 整车控制器详细功能 纯电动汽车的整车控制器的主要功能包括:汽车驱动控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视、行车记录等。整车控制器功能框图如图2所示。整车控制器通过CAN总线和IO端口来获得如加速踏板开度、电池SOC、车速等信息,并根据这些信息输出不同的控制动作。 下面分别介绍各部分实现的具体功能。 2.1 汽车驱动控制 根据司机的驾驶要求、车辆状态等状况,经分析和处理,向电机控制器发出指令,满足驾驶工况要求。包括启动、前进、倒退、回馈制动、故障检测和处理等工况。 2.2 整车能量优化管理 通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调)的协调和管理,以获得最佳的能量利用率。 2.3 网络管理 整车控制器作为信息控制中心,负责组织信息传输,网络状态监控,网络节点管理等功能,网络故障诊断和处理。

宝钢高强度汽车钢板

宝钢高强度汽车钢板 宝钢新开发的高强度汽车用钢有4个强度级别(屈服强度),与欧洲标准一致。 1. 技术标准 表1 宝钢高强度汽车钢板的技术指标(欧洲标准) 注:厚度大于8mm屈服强度可降低20MPa。 注:Nb+ V+ Ti≤0.22% 2.实物水平

2.2 650MPa级冷弯照片 8mm钢板 3mm钢板 3mm和8mm钢板2.3 700MPa级冷弯照片 8mm钢板 8mm钢板 4mm钢板 3. 可供规格 4.焊接 宝钢汽车用热轧高强钢通过低碳低合金设计降低钢的碳当量和焊接裂纹敏感系数,具有良好的可焊接性能,不需预热就可直接进行焊接。 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 Pcm=C+(Mn+Cr+Cu)/20+V/10+Mo/15+Si/30+Ni/60+5B 焊接方法 宝钢汽车用热轧高强钢可使用气体保护焊(MAG)和手工电弧焊(SMAW)、埋弧焊(SAW)进

行焊接,推荐使用气体保护焊(MAG )。 焊接热输入 焊接时使用推荐的热输入,可使热影响区具有良好的机械性能。并且热输入范围越宽说明该钢种的焊接性能越好。 焊接热输入由下列公式计算: 60 1000 k U I Q v ???= ? 下图为按钢板厚度推荐的最佳焊接热输入范围: 在厚度一定的条件下宝钢汽车用热轧高强钢的许用焊接热输入范围很宽,具有优良的焊接性能。 坡口形式 宝钢汽车用热轧高强钢适用于多种接头型式的焊接,常用的接头型式有:I 型坡口、V 型坡口 焊接材料 在焊接接头力学性能满足构件要求的情况下,为避免接头处的应力集中、降低焊缝的内应力,应尽可能选择强度不超过推荐值的焊材。

电动汽车控制系统毕业设计

摘要 在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。 本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。 在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。 驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。 他励直流电动机驱动系统能够很好的运行在电动汽车上,性能可靠、结构简 单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。 关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制

目录 摘要 (1) 第一章绪论 1.1纯电动汽车在国内的发展状况 (3) 1.2 国外电动汽车发展现状 (3) 1.3 本课题的任务和主要工作 (4) 第二章他励电动机的控制理论基础 2.1他励直流电动机的调速与制动 (5) 2.1.1直流电动机电枢电动势和电磁转矩 (5) 2.1.2 他励直流电动机的机械特性 (6) 第三章系统的硬件设计 3.1系统硬件的整体设计方案 (10) 3.2主控制器MCU的介绍 (10) 3.2.1 MCU的选择 (10) 3.2.2 ATmega64的特性与内部结构 (11) 3.3开关电源模块 (12) 3.4电流检测模块 (13) 3.5驱动电路的设计 (16) 3.6电压检测电路 (17) 3.7温度检测电路 (18) 3.8加减速踏板信号检测电路 (19) 3.9 开关量输入信号 (20) 3.10蜂鸣器报警电路 (20) 3.11通讯模块电路设计 (21) 3.12硬件抗干扰的设计 (22) 3.13本章小结 (23) 第四章系统的软件设计 4.1 电动汽车的控制策略研

相关主题
文本预览
相关文档 最新文档