美式期权定价的数值方法
- 格式:pdf
- 大小:587.63 KB
- 文档页数:13
美式看跌期权定价的数值解法美式期权定价通常采用数值方法,包括二叉树法、有限差分法和monte carlo模拟法。
其中,二叉树法和有限差分法都属于逆向求解的方法,可以求出美式期权的最优执行时刻以及价格,但对于路径依赖期权和具有多标的资产的期权,这两种方法受到了限制。
monte carlo模拟方法的原理虽然是正向求解,但20世纪90年代以来,学者们通过将树图分析技术以及动态规划原理引入monte carlo模拟中,已经实现了美式期权的monte carlo模拟定价。
本文首先介绍了lsm方法的理论框架和基本原理,其次以单一标的资产的美式看跌期权为例,给出了具体的算法实现步骤以及matlab 程序,最后通过一个实例说明lsm方法的可行性及优缺点。
一.lsm方法的理论框架和基本原理为模拟美式期权定价,首先设立以下基本假定:标的资产价格演化过程遵循几何布朗运动市场是无摩擦;无风险利率r为固定的常数。
为简化计算,将期权的有效期[0,t]均分为个子区间,这样期权只可能在n+1个交易时点行权:0=t0<t1<t2<……<tn=t。
在t时刻前的某一可能执行点tn时刻,若立即行权,期权价值即执行期权获得的收益现金流max(k-st,0),是已知的;若继续持有,期权价值即为继续持有该期权的期望收益它是个条件期望,依赖于下一时点期权决策的价值,需逆向求解,这是一般的monte carlo模拟法无法做到的。
然而通过实证研究发现,只要标的资产价格过程具有马尔科夫性,拟合的条件期望函数可用多个不同阶的拉格朗日多项式线性组合而成,根据标的变量个数的不同,选择不同个数的多项式的线性组合。
因此,我们将所有(m条)样本路径在时点tn的价格stn和stn2为解释变量,将对应样本路径上的期望收益作为被解释变量,建立如下线性回归模型:将各个资产价格样本路径带入到回归方程,就可得到期权在各个时点继续持有的价值无偏估计。
美式看跌期权定价的二叉树方法中的几
个不等式
美式期权定价的二叉树方法既考虑的期权的价值,也考虑了未来的期
权价格的变化。
其中,一般包含两个基本不等式,如此可以找到更优的期
权定价解答;这两个不等式就是“中值不等式”(Median Inequality)和“最大不等式”(Maximum Inequality)。
首先,中值不等式(Median Inequality)源自于当价格发生变动时考
虑期权价值不会低于前一个时间段的价值。
它可以表述为:V(T) ≤ V(T-1),其中V(T)为时间T的期权价格,V(T-1)为时间T-1的期权价格。
这种
情况也适用于期权看跌,声明为:K-V(T) ≤ K-V(T-1)。
其次,最大不等式(Maximum Inequality)源自于期权价格不会高于
某个有限的上限。
它可以表述为:V(T) ≥ K,其中V(T)为时间T的期权价格,K为期权价格上限。
此外,期权看跌也可以用此不等式来表述,声明为:K-V(T) ≥ K。
这两个基本不等式在美式期权定价二叉树法中起到至关重要的作用,
它们可以帮助我们确定期权价格的有限范围,避免可能出现的价格夸大或
下跌的情况。
同时,它们可以帮助我们从期权的历史表现中推导出比较准确的期权定价解。
美式期权定价方法综述【摘要】本文介绍了几种主要的美式期权定价方法。
其中,对叉树法、蒙特卡洛法和有限差分法进行了较详细的分类综述。
最后,简单介绍了有限元法,近似解析公式法和提前执行权利金法在美式期权定价方面的应用。
【关键词】美式期权;叉树法;蒙特卡洛;有限差分1 叉树方法叉树方法是将期权的基础资产价格过程在风险中性条件下离散化,在利用动态规划的方法求解该期权的价格。
该方法由Cox,Ross和Rubinstein于1979年提出,因此我们将该模型简称为CRR模型。
Hsia(1983)证明在中心极限定理及某些参数下,二叉树模型将收敛为连续的BS模型。
二叉树方法简单易行,迄今已被广泛扩展。
Hull和White(1988)利用控制变异来修正二叉树模型,并用于美式期权定价,发现此法收敛速度更快。
Breen(1991)通过修正二叉树模型发展出加速二叉树模型,研究表明时间间隔固定时,此法可加速二叉树收敛,并提高精确性。
Boyle(1986)发展出三叉树模型,即一段时间内股价可能上涨,下跌之外或持平。
三叉树定价原理与二叉树类似,因而适用于美式及欧式期权定价,且资产预期价格变动或投资者的风险偏好差异不会影响期权价格。
Rubinstein (2000)比较了三叉树与二叉树模型,发现前者的优越性在于比后者多一个自由度,使股价变化与时间分割相互独立。
2 蒙特卡洛方法蒙特卡洛方法是使用计算机来模拟基础资产价格变动的随机过程,并求期权价格的方法。
Hull和White(1993)提出蒙特卡洛法时,认为只适用于欧式期权定价。
Tilley(1993)则提出用蒙特卡洛法解决美式期权的提前执行,通过记录基础资产价格路径,并比较提前执行收益与期权价格,判断是否提前执行。
此后学者对这一方法提出新扩展,较为著名的有Barraquand和Martineau(1995)提出的BM模型,和Raymar和Zwecher(1998)提出的RZ模型。
两个模型的提前执行决策都是比较执行价和持有价,但分隔区域的数量不足会造成每一区域持有价格的估计偏差。
期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。
相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。
本文将介绍几种常用的期权定价数值方法。
第一种方法是蒙特卡洛模拟法。
这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。
蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。
其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。
蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。
缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。
第二种方法是二叉树模型。
二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。
每一步的价格变动通过建立期权价格的递归关系进行计算。
二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。
二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。
缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。
第三种方法是有限差分法。
有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。
其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。
有限差分法适用于各种不同类型的期权定价,特别是美式期权。
它是一种通用的数值方法,可以处理多种金融模型。
缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。
综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。
不同的方法适用于不同类型的期权和市场情况。
在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。
期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。
与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。
本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。
美式期权的三叉树定价模型作者:孟飞来源:《商情》2013年第28期【摘要】美式期权和欧式期权不同,美式期权可以在到期日以前任意时间操作。
一般而言,美式期权定价的解析解是很难得到的,二叉树方法是一个比较好的数值计算的方法,运用三叉束的模型得到了美式期权的一种数值计算方法,并且给出实例说明三叉树模型要比二叉树模型在精确性方面更好,收敛速度更快。
【关键词】美式期权,Black-Scholes期权定价模型,二叉树模型,三叉树模型1.介绍期权作为一种衍生证券,它的定价决定于原生资产价格的变化。
而原生资产是一种风险资产,因此它的价格变化是随机的,由此产生的期权的价格变化也必然是随机的。
期权按合约中的有关实施的条款分为欧式期权与美式期权。
只能在合约规定的到期日实施的期权称为欧式期权;能在合约规定的到期日以前(包括到期日)任何一个工作日实施的期权称为美式期权。
由于美式期权实施的任意性,很难得到美式期权定价的解析。
人们往往借助于数值处理的方法来解决美式期权定价问题。
常用的期权数值计算方法是二叉树定价模型。
该模型被广泛应用于评价各种风险投资项目。
本文将针对美式期权,采用三叉树的数值算法,得出美式期权的近似解。
并在此基础上,还以一个数值计算实例,说明了三叉树定价模型近似值无论在精度上还是在计算量大小上均优于常用的二叉树定价模型近似值。
2、美式期权的三叉树定价模型在建立美式期权的三叉树定价模型之前先做出以下基本假设:(1)所有投资者信息共享;(2)市场是无摩擦的,即没有交易费用和税收;(3)不存在套利机会;(4)市场是完备的;(5)股票价格S(t)在时期[0,T]内运动过程遵循几何布朗运动:dS/S=rdt+Rdz(r为无风险利率,R为瞬时波动率,dz为标准维纳过程。
为了建立美式期权三叉树定价模型,先建立简单的欧式期权的三叉树模型,首先将连续变量S(t)进行离散化。
把时段[0,T]分成n个相等的部分,长度为△t=Tn,其中T为期权的到期时间。
期权权利金如何计算的(期权权利金计算公式)1.欧式期权权利金计算(以认购期权为例):欧式期权指在到期日当天才能行权。
其权利金计算公式如下所示:内在价值 = Max(标的资产价格 - 行权价格, 0)时间价值=期权总价值-内在价值期权总价值通过Black-Scholes模型等定价模型计算,并会受到以下因素的影响:-标的资产价格(S):标的资产价格越高,认购期权的价值越高。
-行权价格(K):行权价格越低,认购期权的价值越高。
-剩余到期时间(T):剩余到期时间越长,认购期权的价值越高。
-无风险利率(r):无风险利率越高,认购期权的价值越高。
-标的资产波动率(σ):标的资产波动率越高,认购期权的价值越高。
2.美式期权权利金计算:美式期权指在到期日之前的任意一天都可以行权。
其计算方法相对复杂,一般通过数值方法(如二叉树模型)进行近似计算。
3.期权权利金的影响因素:-标的资产价格:标的资产价格越高(或越低),认购(或认沽)期权的价值越高。
-行权价格:行权价格越低(或越高),认购(或认沽)期权的价值越高。
-剩余到期时间:剩余到期时间越长,认购(或认沽)期权的价值越高。
-无风险利率:无风险利率越高,认购(或认沽)期权的价值越高。
-标的资产的波动率:标的资产波动率越高,认购(或认沽)期权的价值越高。
4.期权权利金调整:总结:期权权利金的计算涉及多个因素,包括期权类型、行权价格、标的资产价格、剩余到期时间、波动率等。
欧式期权的权利金可以通过内在价值和时间价值相加得到,而美式期权一般通过近似计算。
此外,期权权利金还会受到市场供需情况的影响,可能会进行调整。
金融衍生产品中美式与亚式期权定价的数值方法研究一、概述金融衍生产品是现代金融市场的重要组成部分,其定价问题一直是金融数学、金融工程领域的研究热点。
美式期权与亚式期权作为两种常见的金融衍生产品,其定价问题具有广泛的应用背景和重要的理论价值。
美式期权赋予持有人在期权有效期内任何时间执行合约的权利,而亚式期权则以其有效期内某一特定方式确定的平均价格为基础进行定价。
这两种期权因其独特的性质和复杂的定价机制,在金融市场中占据重要地位。
随着计算机技术的飞速发展和数值方法的不断完善,越来越多的学者开始关注并使用数值方法来研究美式与亚式期权的定价问题。
数值方法不仅可以处理复杂的金融模型,还可以提高定价的准确性和效率。
对美式与亚式期权定价的数值方法进行研究,不仅有助于推动金融衍生产品定价理论的发展,还能为金融机构提供有效的风险管理工具和投资决策支持。
本文旨在探讨美式与亚式期权定价的数值方法,并对比分析各种方法的优缺点。
我们将对美式与亚式期权的基本概念、性质及定价原理进行简要介绍。
我们将重点介绍几种常用的数值方法,包括有限差分法、蒙特卡洛模拟法、二叉树法等,并详细阐述这些方法在美式与亚式期权定价中的应用。
我们将通过实际案例或仿真实验来验证这些数值方法的有效性和实用性,并给出相应的结论和建议。
通过对美式与亚式期权定价的数值方法研究,我们期望能够为金融机构提供更准确、高效的定价工具,同时也为金融衍生产品定价理论的发展做出贡献。
1. 金融衍生产品概述金融衍生产品,作为现代金融市场的重要组成部分,其出现与发展极大地丰富了投资与风险管理的工具。
它们是基于传统金融工具如股票、债券、货币、利率等派生出来的金融产品,其价值依赖于这些基础资产的价格变动。
衍生产品主要包括远期、期货、期权和互换等四大类,它们具有杠杆效应、高风险性、灵活性等特点,能满足投资者不同的风险偏好和收益需求。
期权作为一种特殊的衍生产品,在金融市场中具有广泛的应用。