期权定价数值方法
- 格式:ppt
- 大小:1.30 MB
- 文档页数:41
参考文献1、期权、期货和其它衍生产品,John Hull,华夏出版社。
2、期权定价的数学模型和方法,姜礼尚著,高等教育出版社。
3、金融衍生产品定价的数学模型与案例分析,姜礼尚等著,高等教育出版社。
4、金融衍生产品定价—数理金融引论,孙建著,中国经济出版社。
5、金融衍生工具中的数学,朱波译,西南财经大学出版社。
6、N umerical methods in finance and economics—a MATLAB-based introduction,Paolo Brandimarte,A JOHN WILEY & SONS,INC.,PUBLICATION7.金融计算教程—MATLAB金融工具箱的应用,张树德编著,清华大学出版社。
8、数值分析及其MATLAB实现,任玉杰著,高等教育出版社。
9、数学物理方程讲义,姜礼尚著,高等教育出版社。
10、英汉双向金融词典,田文举主编,上海交通大学出版社。
11、偏微分方程数值解法,孙志忠编著,科学出版社。
第三部分期权定价模型与数值方法期权是人们为了规避市场风险而创造出来的一种金融衍生工具。
理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险收益。
这种组合的确定有赖于对衍生证券的定价。
上个世纪七十年代初期,Black 和 Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推出了在无分红情况下股票期权价格所满足的随机偏微分方程。
从而为期权的精确合理的定价提供了有利的保障。
这一杰出的成果极大的推进了金融衍生市场的稳定、完善与繁荣。
一、期权定价基础1.1 期权及其有关概念1.期权的定义期权分为买入期权(Call Option)和卖出期权(Put Option)买入期权:又称看涨期权(或敲入期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格买入一定数量某种资产的权利的一种法律合同。
卖出期权:又称看跌期权(或敲出期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格卖出一定数量某种资产的权利的一种法律合同。
期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。
相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。
本文将介绍几种常用的期权定价数值方法。
第一种方法是蒙特卡洛模拟法。
这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。
蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。
其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。
蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。
缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。
第二种方法是二叉树模型。
二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。
每一步的价格变动通过建立期权价格的递归关系进行计算。
二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。
二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。
缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。
第三种方法是有限差分法。
有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。
其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。
有限差分法适用于各种不同类型的期权定价,特别是美式期权。
它是一种通用的数值方法,可以处理多种金融模型。
缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。
综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。
不同的方法适用于不同类型的期权和市场情况。
在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。
期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。
与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。
本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。