浅谈缸孔平台珩磨
- 格式:doc
- 大小:176.00 KB
- 文档页数:10
发动机缸孔珩磨工艺及研究浅析作者:杜振宏来源:《科学与财富》2018年第18期摘要:珩磨是机械加工中常用的一种精加工工艺。
通过珩磨可获得很高的尺寸精度、形状精度和表面质量。
发动机缸孔是活塞运动的场所,其加工质量对发动机性能、寿命均有很大影响。
本文从珩磨的原理、珩磨的工艺及珩磨常见质量异常解决等方面,介绍珩磨在缸孔加工中的应用。
关键词:缸孔;珩磨;精度;应用概述由珩磨的基本原理简述,引入当前常用缸孔珩磨工艺的介绍,并对珩磨缸孔所使用的工艺装备进行讲解,继而对缸孔珩磨加工中常见的质量问题进行阐述,分析、探讨解决方法。
1 珩磨工艺介绍1.1珩磨原理两条油石相对往复磨合,随着往复磨合次数的增加,接触面的平面度、粗糙度越好,直到达到一个稳定值(这个稳定值由油石的硬度、粒度、密度等参数决定)。
珩磨即借鉴这个原理,只是将其中一条油石更换为工件,在油石和工件的相对往复磨合过程中,逐渐获得高质量的工件尺寸精度、形状精度和表面质量。
1.2珩磨的优点珩磨产生的网纹具有储油功能。
油石与工件在磨合过程中,会在工件表面形成有规律的网纹沟槽,如在工件表面涂上润滑油,部分润滑油就可以存储在沟槽内部,在与配合的工件(如缸孔和活塞)接触时,可以起到持续润滑的作用,有效降低工件表面的磨耗,提高使用寿命。
可分工步珩磨以得到特定的工件表面精度。
先采用低粒度的油石进行粗珩,使工件表面获得沟槽后,再使用高粒度的油石进行精珩,将工件表面的高点磨平。
缩短工件使用时的磨合时间,提高使用寿命。
珩磨还可以提高工件的形状精度,如面的平面度、孔的圆柱度等。
1.3发动机缸孔珩磨工艺为了获得理想的珩磨质量,缸孔珩磨一般需要三个步骤,第一步是粗珩,即使用粒度较低的油石对前序加工的缸孔进行修正,获得适合第二步加工的圆柱度、表面粗糙度及切削余量。
第二步是半精珩,主要目的是在缸孔内表面加工出均匀的交叉深沟槽,及进一步修正尺寸精度。
第三步是精珩,即使用高粒度的油石,磨去第二步形成的缸孔表面沟槽的波峰,形成平台,以及获得最终的缸孔直径尺寸。
浅析发动机零部件加工中的珩磨技术论文导读:珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
发动机汽缸体缸孔珩磨是平台珩磨最典型的应用。
平台珩磨后可在缸孔(或缸套)表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。
铰珩工艺是在传统珩磨工艺的基础上发展起来的新工艺,其加工过程中融入了铰孔的特点,目前在缸体曲轴孔、连杆大小头孔的精整加工中广泛应用。
发动机缸孔表面的微观质量,决定了发动机运转时的磨合性能、运转可靠性和润滑油消耗,通过刷珩工艺可以缩短发动机的磨合时间和显著降低润滑油消耗。
在这种情况下进行的珩磨称作模拟珩磨,工件的珩磨质量可显著提高,工件的宏观形状精度可提高五至十倍。
关键词:珩磨,平台珩磨,铰珩,刷珩,模拟珩磨,缸孔珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在发动机零部件的制造中广泛应用。
珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。
同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。
在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。
这样,加工时珩磨头以工件孔壁作导向。
因而加工精度受机床本身精度的影响较小,孔表面的形成原理基本上类似两块平面运动的平板相互对研而形成平面的原理。
珩磨加工特点加工精度高:中小型的通孔加工,其圆柱度可达0.001mm 以内。
一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。
对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度可达到0.01mm/m以内。
表面质量好:珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小,珩磨加工面几乎无嵌砂和挤压硬质层。
缸孔平台网纹珩磨的评定方法和工艺实践 2010-2-6 16:49:00 来源:一汽轿车股份有限公司第二发动机厂阅读:801次我要收藏【字体:大中小】缸孔的表面粗糙度的形成一般要经过粗镗、半精镗、粗珩、精珩等多个步骤才能达到期望的质量,近年来,各发动机制造厂和机床制造商都在进行着缸孔表面加工新工艺方法的研究。
本文重点介绍了缸孔平台网纹珩磨工艺的评定方法及其在发动机加工中的实际应用。
缸孔平台珩磨工艺及评定方法缸孔平台珩磨技术作为内燃机缸孔或缸套精加工的一种新工艺,初期主要用于高压缩比的柴油机,近几年有了进一步的发展,在汽油机上也得到了广泛的应用。
平台珩磨技术可在缸孔或缸套表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。
典型的平台珩磨形成的表面如图1所示。
这种表面结构具有以下优点:● 良好的表面耐磨性;● 良好的油膜储存性,可使用低摩擦力的活塞环;● 降低机油消耗;● 减少磨合时间(几乎可省掉)。
1、缸孔平台珩磨的工艺过程为形成平台珩磨表面,在大批量生产时一般需要进行粗珩、精珩、平台珩磨三次珩磨,其作用分别是:● 粗珩:预珩阶段,主要是要形成几何形状正确的圆柱形孔和适合后续加工的基本表面粗糙度。
● 精珩:基础平台珩磨阶段,形成均匀的交叉网纹。
● 平台珩:平台珩磨阶段,形成平台断面。
要想获得理想的表面平台网纹结构,对精珩和平台珩的同轴度要求很高,因此将两个阶段合并成一次加工更为合理,通过设计成有双进给装置和装有精珩、平台珩两种珩磨条的珩磨头,能够实现一次装夹即可完成精珩和平台珩,消除了重复定位误差的影响,可以减轻前加工的压力和对机床过高精度的要求。
2、平台珩磨表面质量的评定方法由于采用国际标准中的Ra、Rz等参数不足以精确表示并测量平台珩磨表面,因此,发动机制造商纷纷制定了自己的平台珩磨表面标准。
经过几年的实践和发展日趋完善,但至今没有统一的平台珩磨技术规范,由于一汽大众公司及一汽轿车公司均采用德国设备和德国标准,这里主要介绍德国用于评定平台珩磨表面质量的几个参数及相应标准。
浅析缸孔平台珩磨技术吴勤(东风本田发动机有限公司,广州510700)摘要:本文从珩磨的原理、评价平台珩磨的各种参数以及影响平台珩磨加工质量的因素三个方面介绍了平台珩磨在缸孔加工领域上的应用。
关键词:平台珩磨、粗糙度、缸孔加工、油石1、前言这几年来,汽车行业在我国的蓬勃发展大家有目共睹。
汽车在国内的人均保有量越来越大。
全国各汽车公司之间的竞争更是越演越烈。
怎样才能脱颖而出赢得市场是他们首要关心的问题。
另一方面,随着人们环保意识的提高,加上油价攀升等众多因素的影响,购车群体对汽车的经济性、环保性越来越重视。
改善发动机加工工艺、降低发动机的油耗及尾气排放是汽车赢得市场的重大突破口。
影响发动机的油耗和尾气排放的因素是很多的,其中一个重要的影响因素是发动机气缸与活塞环这对摩擦副的工作状况。
润滑油对活塞环与气缸壁之间的工作状况起着决定性的影响。
如果气缸壁的润滑油过多,在高温高压的情况下润滑油很容易燃烧而产生废气,使排放超标;相反如果气缸壁的润滑油过少,会大大增加活塞环对气缸壁的摩擦,降低发动机的效率,增加油耗,还会影响燃烧室的密封性能,增加废气的排放;甚至还有可能出现拉缸的现象。
所以控制气缸壁的储油能力对发动机的性能有着重要的影响,这样发动机气缸壁的表面质量就显得尤为重要了。
传统的发动机气缸壁的加工工艺已经很难对其表面质量作进一步的改善了,有必要研究和开发新型的发动机气缸壁的加工方法。
平台珩磨是国内新型的发动机气缸精加工方法,它能在气缸壁形成良好的表明网纹,使气缸壁在拥有较高的承载率的同时还具有较好的储油能力,大大提高发动机的性能。
平台珩磨的表面微观轮廓如下图所示:2、珩磨的原理珩磨是利用安装在珩磨头圆周上的多条油石,由张开机构将油石沿径向张开,使其压向工件孔壁,以便产生一定的面接触。
同时使珩磨头旋转和往复运动,零件不动;或者珩磨头只作旋转运动,工件往复运动从而实现珩磨。
珩磨时,油石上的磨粒以一定的压力、较低的速度对工件表面进行磨削、挤压和刮擦。
油石作旋转运动和上下往复运动,使油石上的磨粒在孔表面所形轨迹成为交叉而又不重复的网纹。
与内孔磨削相比,珩磨参加切削的磨粒多,加在每粒磨粒上的切削力非常小,珩磨切速低,仅为砂轮磨削速度的几十份之一,在珩磨过程中又旋转加大量的冷却夜,使工件表面得到充分的冷却,不易烧伤,加工变形层薄,故能得到很理想的表面纹理。
珩磨头与机床采用浮动连接,这样能减少机床静态精度对珩磨精度的影响。
还能保证余量均匀,但也决定了珩磨不能修正被加工孔的轴线位置度误差。
由于油石很长,珩磨时工件的突出部分先与油石接触,接触压力较大,使突出部分很快被磨去,直至修正到工件表面与沙条全部接触,因此珩磨能修正前道工序产生的几何形状误差和表面波度误差。
珩磨的切削分为定压切削和定量切削两种。
定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段:第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力很大,孔壁的突出部分很快被磨去。
而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,即油石自锐。
第二阶段是破碎切削阶段,随着珩磨的进行,孔表面越来越光,与油石接触的面积越来越大,单位面积的接触压力下降,切削效率降低。
同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。
因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。
因而磨粒尖端负荷很大,磨粒容易破裂、崩碎而形成新的切削刃。
第三阶段为堵塞切削阶段。
继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间,不易排除,造成油石堵塞,变得很光滑。
因此油石切削能力极低,相当于抛光。
若继续进行油石堵塞严重而产生粘结性堵塞时,油石完全失去了切削的能力并严重发热,孔的精度和表面粗糙度均会受到影响。
此时应尽快结束珩磨。
定量珩磨是指进给机构以恒定的速度扩张进给,使珩磨强制性地切入工件。
因此珩磨只存在脱落切削不可能存在堵塞切削现象。
用此种方法珩磨时,为了孔精度和表面粗糙度,最后可以不进给珩磨一段时间。
有时候为了提高珩磨效率,定压珩磨和定量珩磨可以结合使用。
对于平台珩磨,为了达到平台效果,珩磨时一般需要三道工序,第一道粗珩是要消除前面精镗缸孔所产生的的几何误差,使缸孔圆度、圆柱度均符合工艺要求,并且形成适合下一道珩磨工序加工的良好的表面粗糙度和合适的加工余量。
第二道工序是拉沟槽,是要在缸孔表面形成清晰可见的、对称的、均匀的网纹,并在微观轮廓上形成具有一定数量和深度的沟槽。
第三道工序精珩形成平台,去掉粗珩产生的波峰而保留其波谷,从而使轮廓曲线上出现一定宽度和数量的平台,并保有一定深度的沟槽。
我公司对缸孔的平台珩磨,三道工序都在同一个珩磨头上实现,珩磨头采用机械液压双进给结构,首先是粗珩,采用机械涨刀,为定量珩磨,分两次不同的进给量和进给速度来实现;其次是精珩,采用液压涨刀,为定压珩磨,分两级膨胀力贴靠缸孔,以达到消除平台的目的。
双进给珩磨头的结构如下图所示:3、平台珩磨表面特征参数不同的厂家对平台珩磨的要求都有所不同,但其形态都必然要通过各种参数表现出来,要探讨珩磨技术,就必须要对各种表征网纹特征的参数有所了解。
常见的有Ra、Tp (Rmr)、Abbott曲线、Rk、Rpk、Rvk、Mr1、Mr2、网纹角θ等。
Ra:轮廓算术平均偏差,是公认的、广泛应用的、国际粗糙度参数。
它是在取样长度轮廓偏距绝对值的算术平均值。
从定义可知Ra值仅表示表面轮廓的平均粗糙程度,不能表征轮廓形状结构特征。
Ra相同的表面,其轮廓形状可能不同,甚至相差很大,因此,使用Ra 值评价平台网纹表面结构有一定的局限性。
Rz:微观不平度十点高度,在取样长度内,5个最大的轮廓峰高的平均值的绝对值和5个最大的轮廓谷深的平均值的绝对值之和。
如下图所示:图三Rz虽然评价点少,不涉及最大峰高与最低谷深之间的轮廓变化,属于不完全的统计参数,当被测量的表面均匀性较差时,会因为被测部位不同,在理论上产生很大的离散性,但是对于均匀性较好的平台网纹表面,却能对网纹沟槽的深度、分布、均匀程度等进行细致的描述。
所以参数Rz是非常有价值的支持参数,被广泛应用。
Tp(Rmr):轮廓支承长度率,截止水平线上,具有实体材料的轮廓长度所占评定长度的百分比。
截止水平线与基准线平行。
从最高波峰开始引水平线可以确定截止水平线。
Abbott曲线:轮廓支承长度率曲线tp(c),又称阿伯特-范斯通曲线,用纵坐标表示截止水平线的深度,横坐标表示不同截止水平深度的轮廓支承长度率所画出来的曲线就是轮廓支承长度率曲线。
它反映了某一截止线上实际接触长度的大小,直观地反映了零件表面的耐磨性,并可用它近似地描述零件表面磨损到一定程度时实际接触面积的大小,对分析零件表面的承载能力也具有重要的意义。
所以它是描述粗糙度轮廓指标的主要指标,也是评价平台珩磨网纹特征的一项重要特征值。
轮廓支承长度率曲线对气缸内孔表面的初期磨合性能、使用寿命、润滑性能等都有非常重要的意义。
但由于它是以图形的形式表现的,所以在实际应用中有一定的局限性。
因此需要用一系列参数对轮廓支承长度率曲线进行量化描述。
我们称之为综合参数。
在坐标系中,用轮廓支承长度率为40%的切割线沿着轮廓支承长度率曲线移动,直至找到最小的斜率为止,然后把切割线两端延长,与纵轴相交。
这条割线把轮廓支承长度率曲线分为三个区域,分别为波峰区、中心区和波谷区。
由此可以产生一系列表征轮廓支承长度率的曲线,其中有Rpk、Rvk、Rk、Mr1、Mr2等。
如下图所示:粗糙度核心轮廓深度Rk:在分离出轮廓峰和轮廓谷之后剩余的核心粗糙度轮廓的深度为Rk。
Rk表征了粗糙度轮廓核心部分的特点——是轮廓支承长度率曲线上Tp增长最快(截距下降最慢)的区域,是气缸长期工作表面,它直接影响着气缸套的运转性能和使用寿命。
简约峰高Rpk:粗糙度核心轮廓上方的轮廓峰的平均高度,气缸套工作表面轮廓顶部的这一部分,当发动机开始运行时,将很快被磨损掉,其减低的高度将影响气缸套进入正常工作状态的磨合时间及实际材料磨损量。
简约谷深Rvk:从粗糙度核心轮廓延伸到材料内的轮廓谷的平均深度。
这些深入表面的深沟在活塞环相对缸套运动时,有利于形成附着性很好的油膜,在减少摩擦功损失的同时,能大幅度降低油耗。
轮廓支承长度率Mr1:由一条将轮廓峰分离出粗糙度核心轮廓的截线而确定的。
该截止线是粗糙度中心轮廓到没有实体材料的那一边的分界线。
Mr1是气缸进入长期工作状态时的轮廓支承长度率。
其数值的大小直接反映了气缸的加工水平和使用性能。
轮廓支承长度率Mr2:由一条将轮廓谷分离出粗糙度核心轮廓的截线而确定的。
该截线是粗糙度中心轮廓到有实体材料那一边的分界线。
它是气缸脱离长期工作表面时的轮廓支承长度率。
其数值的大小不但决定了正常的磨损量,即缸套的使用寿命,还决定了工作表面的储油、润滑能力。
网纹角θ:网纹角是珩磨头的往复运动所形成的珩磨纹的夹角。
是在缸套内径的切面上评定的,其大小是由珩磨头回转线速度与上下往复运动速度决定的。
网纹角θ的大小和均匀程度决定了缸孔表面油膜的稳定性和油耗的大小,从而影响发动机工作性能及气缸套使用寿命。
表征平台珩磨网纹特征的参数多种多样,在实际生产应用中不可能每一个参数都进行测量描述。
而是选几个能够全面、真实反映珩磨表面纹理的,对该产品的性能起关键作用的参数进行描述。
只要这几个参数能够符合设计要求,就认为这个工件合格。
对于发动机缸套的平台珩磨,常见共同描述起表面特征的参数有网纹θ、Rz、Rk、Mr1和Mr2。
有时候也用特定深度的Tp(Rmr)值来代替Mr1和Mr2来描述网纹特征。
例如HONDA CIVIC 1.8L 发动机气缸套的珩磨表面特征评定参数为:40≤θ≤60;1≤Rz≤5;Rk≤1;55%≤Rmr(20)≤95%。
需要注意的是如果用特定深度的Tp值来描述网纹特征时,如果取样长度内出现毛刺、杂物等导致有异常的波峰,会对特定深度的Tp值带来很大的影响,从而导致测量误差增大。
遇到这种情况应去掉异常波峰来计算其特定深度的Tp值。
4、影响平台珩磨加工效率与质量的因素4.1、切削余量气缸套在进入珩磨之前,需要有一道精镗的工序,缸孔精镗后切削余量的大小,是影响平台珩磨加工效率与质量的一个重要因素。
小的加工余量,能提高珩磨加工的效率,但是加工余量不能过小,否则会导致粗珩沟槽不够、不均匀、网纹不清晰等表面缺陷。
如果珩磨余量过大、珩磨时间就会变长,以致加工过程中产生的大量切削热难以及时排散,冷却后孔径变小,直接影响孔的尺寸精度。
珩磨加工余量主要是根据工件材料的硬度、孔径大小以及珩磨前孔的加工精度来选择。