缸孔平台珩磨工艺及常见问题的解决
- 格式:pdf
- 大小:259.20 KB
- 文档页数:5
浅析发动机零部件加工中的珩磨技术论文导读:珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
发动机汽缸体缸孔珩磨是平台珩磨最典型的应用。
平台珩磨后可在缸孔(或缸套)表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。
铰珩工艺是在传统珩磨工艺的基础上发展起来的新工艺,其加工过程中融入了铰孔的特点,目前在缸体曲轴孔、连杆大小头孔的精整加工中广泛应用。
发动机缸孔表面的微观质量,决定了发动机运转时的磨合性能、运转可靠性和润滑油消耗,通过刷珩工艺可以缩短发动机的磨合时间和显著降低润滑油消耗。
在这种情况下进行的珩磨称作模拟珩磨,工件的珩磨质量可显著提高,工件的宏观形状精度可提高五至十倍。
关键词:珩磨,平台珩磨,铰珩,刷珩,模拟珩磨,缸孔珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在发动机零部件的制造中广泛应用。
珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。
同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。
在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。
这样,加工时珩磨头以工件孔壁作导向。
因而加工精度受机床本身精度的影响较小,孔表面的形成原理基本上类似两块平面运动的平板相互对研而形成平面的原理。
珩磨加工特点加工精度高:中小型的通孔加工,其圆柱度可达0.001mm 以内。
一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。
对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度可达到0.01mm/m以内。
表面质量好:珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小,珩磨加工面几乎无嵌砂和挤压硬质层。
缸孔加工的质量问题、主要原因分析及预防对策加工缸内孔时,对经常出现的缸孔表面有振动波纹、孔表面出现深沟刀痕、切屑划伤表面,表面有起皮和折皱、孔尺寸超差、缸孔几何形位超差等常见加工质量缺陷的形成原因进行分析,并提出相应的预防对策,可以帮助生产厂家及时发现并解决生产过程中出现的加工质量问题。
标签:油缸;加工缺陷;原因分析;预防对策缸内孔加工时,技术要求通常都比较高,不仅有严格的尺寸公差和形位公差要求,而且对表面粗糙度的要求也非常高,影响内孔表面粗糙度的几种表现形式包括:表面有振动波纹、孔表面出现深沟刀痕、切屑划伤表面,表面有起皮和折皱等1 缸孔加工质量问题及预防对策1.1 表面有振动波纹表面振动波纹是影响缸孔粗糙度的重要因素,其产生的主要原因包括①机床、夹具、刀具工艺系统刚性差。
②各导向部分间隙过大。
③镗刀过度磨损;镗刀后角过大;切削力过大。
④珩磨砂条磨钝;砂条太硬;自励性差。
⑤滚压头滚子制造精度差;一组滚子尺寸差过大(滚压时产生周期性振动)走刀量大等。
预防对策:①增加系统刚性。
②合理选择各导向部分的间隙。
③及时刃磨刀具;减小后角;减小切削深度和进给量;增加切削速度。
④修整砂条;合理选择砂条。
⑤提高滚压头制造精度;仔细选择滚子尺寸;减小走刀量。
1.2 孔表面出现深沟刀痕深沟刀痕这类缺陷产生的主要原因包括:①镗孔时出现积屑瘤。
②精镗刀刃磨、抛光粗糙度太粗。
③滚压头滚子疲劳点蚀和剥落;滚子圆角过渡不良;表在粗糙度粗。
④珩磨时有粘砂现象,划伤缸孔表面。
预防对策:①合理选择切削用量。
②仔细刃磨和抛光。
③及时检修滚压头;提高滚子制造质量。
④合理选择砂条;加大冷却液的流量和压力;减低冷却液粘度。
1.3 切屑划伤表面切屑划伤表面在加工过程中经常出现,其产生的主要原因①冷却液流量、压力小,排屑不畅。
②镗头体设计不合理,冷却液产生涡流,不能顺利排出切屑。
③鏜刀断屑台设计不合理,不能断屑。
预防对策:①提高压力或增加流量。
发动机缸体珩磨机加工尺寸的控制方法上汽通用五菱发动机工厂的缸体珩磨机是进口全自动加工设备,该珩磨机承担了保证缸体加工重要部位缸孔和曲轴孔的最终加工尺寸的任务,是缸体线的关键设备。
由于加工方式的特殊性及工艺要求的多样性,加工精度和加工稳定性要更高,掌握珩磨机加工尺寸的控制方法,对于实现发动机性能的稳定性显得尤为重要。
本文分析了影响珩磨机加工尺寸的因素,并提出了解决方案。
珩磨机加工的现状1.珩磨机及加工工序描述上汽通用五菱发动机工厂的珩磨机是德国格林(Gehring)公司生产的,分为12个工位,由进出料工位、型号识别工位、缸孔粗加工工位、精加工工位、曲轴孔加工工位、MARPOSS检测工位、翻转工位及几个空工位组成。
加工工位拥有机械电子涨刀系统和液压涨刀系统,可以加工1.0~1.2L多种型号的缸体。
工件通过一个抬起步进式输送系统进行输送加工,该抬起步进式输送系统通过伺服电机驱动实现精确控制。
2. 珩磨机加工方面存在的问题(1)珩磨机精珩工位换刀后,加工首件粗糙度不合格,不能完全覆盖粗珩留下的刀痕和深沟槽(见图1)。
图1 不能完全覆盖粗珩留下的刀痕和深沟槽(2)加工出现缸孔圆度和圆柱度不好,出现超差和偏上差(见图2)。
图2 出现超差和偏上差(3)由于加工的缸孔是半盲孔,缸孔底部直径偏小,需要在缸孔底部增加延时增长缸孔底部的加工时间来修复,会造成缸孔出现环行刀痕的风险(见图3)。
图3 缸孔出现环行刀痕(4)珩磨加工直径偏大或偏小,影响节拍和造成返修的浪费。
影响加工尺寸的因素分析要获得良好的珩磨效果,除选用先进的珩磨工具及正确选用磨条材料和粒度外,珩磨时采用的工艺参数对加工质量也有很大的影响。
本文由无锡汽车租赁 奶茶店加盟 联合整理发布1.珩磨速度V珩磨速度为旋转速度V1和往复速度V2的合成,旋转速度V1为18~25m/min时最佳。
经验证明,缸孔的加工质量和往复速度有着直接的关系,往复速度V2为25~35m/min时,网纹角θ为45°~70°时,珩磨效率最高。
缸孔加工的质量问题、主要原因分析及预防对策作者:王君华来源:《科技创新与应用》2013年第32期摘要:加工缸内孔时,对经常出现的缸孔表面有振动波纹、孔表面出现深沟刀痕、切屑划伤表面,表面有起皮和折皱、孔尺寸超差、缸孔几何形位超差等常见加工质量缺陷的形成原因进行分析,并提出相应的预防对策,可以帮助生产厂家及时发现并解决生产过程中出现的加工质量问题。
关键词:油缸;加工缺陷;原因分析;预防对策缸内孔加工时,技术要求通常都比较高,不仅有严格的尺寸公差和形位公差要求,而且对表面粗糙度的要求也非常高,影响内孔表面粗糙度的几种表现形式包括:表面有振动波纹、孔表面出现深沟刀痕、切屑划伤表面,表面有起皮和折皱等1 缸孔加工质量问题及预防对策1.1 表面有振动波纹表面振动波纹是影响缸孔粗糙度的重要因素,其产生的主要原因包括①机床、夹具、刀具工艺系统刚性差。
②各导向部分间隙过大。
③镗刀过度磨损;镗刀后角过大;切削力过大。
④珩磨砂条磨钝;砂条太硬;自励性差。
⑤滚压头滚子制造精度差;一组滚子尺寸差过大(滚压时产生周期性振动)走刀量大等。
预防对策:①增加系统刚性。
②合理选择各导向部分的间隙。
③及时刃磨刀具;减小后角;减小切削深度和进给量;增加切削速度。
④修整砂条;合理选择砂条。
⑤提高滚压头制造精度;仔细选择滚子尺寸;减小走刀量。
1.2 孔表面出现深沟刀痕深沟刀痕这类缺陷产生的主要原因包括:①镗孔时出现积屑瘤。
②精镗刀刃磨、抛光粗糙度太粗。
③滚压头滚子疲劳点蚀和剥落;滚子圆角过渡不良;表在粗糙度粗。
④珩磨时有粘砂现象,划伤缸孔表面。
预防对策:①合理选择切削用量。
②仔细刃磨和抛光。
③及时检修滚压头;提高滚子制造质量。
④合理选择砂条;加大冷却液的流量和压力;减低冷却液粘度。
1.3 切屑划伤表面切屑划伤表面在加工过程中经常出现,其产生的主要原因①冷却液流量、压力小,排屑不畅。
②镗头体设计不合理,冷却液产生涡流,不能顺利排出切屑。
③镗刀断屑台设计不合理,不能断屑。
缸孔平台网纹珩磨的评定方法和工艺实践 2010-2-6 16:49:00 来源:一汽轿车股份有限公司第二发动机厂阅读:801次我要收藏【字体:大中小】缸孔的表面粗糙度的形成一般要经过粗镗、半精镗、粗珩、精珩等多个步骤才能达到期望的质量,近年来,各发动机制造厂和机床制造商都在进行着缸孔表面加工新工艺方法的研究。
本文重点介绍了缸孔平台网纹珩磨工艺的评定方法及其在发动机加工中的实际应用。
缸孔平台珩磨工艺及评定方法缸孔平台珩磨技术作为内燃机缸孔或缸套精加工的一种新工艺,初期主要用于高压缩比的柴油机,近几年有了进一步的发展,在汽油机上也得到了广泛的应用。
平台珩磨技术可在缸孔或缸套表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。
典型的平台珩磨形成的表面如图1所示。
这种表面结构具有以下优点:● 良好的表面耐磨性;● 良好的油膜储存性,可使用低摩擦力的活塞环;● 降低机油消耗;● 减少磨合时间(几乎可省掉)。
1、缸孔平台珩磨的工艺过程为形成平台珩磨表面,在大批量生产时一般需要进行粗珩、精珩、平台珩磨三次珩磨,其作用分别是:● 粗珩:预珩阶段,主要是要形成几何形状正确的圆柱形孔和适合后续加工的基本表面粗糙度。
● 精珩:基础平台珩磨阶段,形成均匀的交叉网纹。
● 平台珩:平台珩磨阶段,形成平台断面。
要想获得理想的表面平台网纹结构,对精珩和平台珩的同轴度要求很高,因此将两个阶段合并成一次加工更为合理,通过设计成有双进给装置和装有精珩、平台珩两种珩磨条的珩磨头,能够实现一次装夹即可完成精珩和平台珩,消除了重复定位误差的影响,可以减轻前加工的压力和对机床过高精度的要求。
2、平台珩磨表面质量的评定方法由于采用国际标准中的Ra、Rz等参数不足以精确表示并测量平台珩磨表面,因此,发动机制造商纷纷制定了自己的平台珩磨表面标准。
经过几年的实践和发展日趋完善,但至今没有统一的平台珩磨技术规范,由于一汽大众公司及一汽轿车公司均采用德国设备和德国标准,这里主要介绍德国用于评定平台珩磨表面质量的几个参数及相应标准。
浅析缸孔平台珩磨(可编辑优质文档)(可以直接使用,可编辑完整版资料,欢迎下载)浅析缸孔平台珩磨技术吴勤(东风本田发动机,广州510700)摘要:本文从珩磨的原理、评价平台珩磨的各种参数以及影响平台珩磨加工质量的因素三个方面介绍了平台珩磨在缸孔加工领域上的应用。
关键词:平台珩磨、粗糙度、缸孔加工、油石1、前言这几年来,汽车行业在我国的蓬勃发展大家有目共睹。
汽车在国内的人均保有量越来越大。
全国各汽车公司之间的竞争更是越演越烈。
怎样才能脱颖而出赢得市场是他们首要关心的问题。
另一方面,随着人们环保意识的提高,加上油价攀升等众多因素的影响,购车群体对汽车的经济性、环保性越来越重视。
改善发动机加工工艺、降低发动机的油耗及尾气排放是汽车赢得市场的重大突破口。
影响发动机的油耗和尾气排放的因素是很多的,其中一个重要的影响因素是发动机气缸与活塞环这对摩擦副的工作状况。
润滑油对活塞环与气缸壁之间的工作状况起着决定性的影响。
如果气缸壁的润滑油过多,在高温高压的情况下润滑油很容易燃烧而产生废气,使排放超标;相反如果气缸壁的润滑油过少,会大大增加活塞环对气缸壁的摩擦,降低发动机的效率,增加油耗,还会影响燃烧室的密封性能,增加废气的排放;甚至还有可能出现拉缸的现象。
所以控制气缸壁的储油能力对发动机的性能有着重要的影响,这样发动机气缸壁的表面质量就显得尤为重要了。
传统的发动机气缸壁的加工工艺已经很难对其表面质量作进一步的改善了,有必要研究和开发新型的发动机气缸壁的加工方法。
平台珩磨是国内新型的发动机气缸精加工方法,它能在气缸壁形成良好的表明网纹,使气缸壁在拥有较高的承载率的同时还具有较好的储油能力,大大提高发动机的性能。
平台珩磨的表面微观轮廓如下图所示:图一2、珩磨的原理珩磨是利用安装在珩磨头圆周上的多条油石,由张开机构将油石沿径向张开,使其压向工件孔壁,以便产生一定的面接触。
同时使珩磨头旋转和往复运动,零件不动;或者珩磨头只作旋转运动,工件往复运动从而实现珩磨。
书山有路勤为径;学海无涯苦作舟
气缸孔平台珩磨的质量改善
珩磨是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
这种工艺不仅能高效去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度(一般可达Ra0.2~1.0mm,甚至可以低于
Ra0.025mm)的有效加工方法,尤其适合于薄壁孔和刚性不足的工件或较硬材料工件的加工,在汽车零部件的制造中应用很广泛,尤其是发动机缸体的制造。
气缸孔平台网纹珩磨
平台珩磨、滑动珩磨是较普通珩磨更为先进的珩磨工艺,具有气缸孔表
面微观形貌呈光滑的平顶(而不是尖峰),与相对较深的波谷(与普通珩磨
相比波谷较深)规律性地间隔分布、发动机的磨合周期短、润滑条件好和生产效率高等优点,是目前发动机气缸孔珩磨工艺的主流。
平台珩磨和滑动珩磨工艺对于提高汽车发动机的气缸体质量、提高发动机的使用寿命,提高发动机的经济性和动力性有重要意义,特别是对克服发动机早期磨损和降低发动机油耗等方面起到了至关重要的作用。
本文结合我公司实际应用重点探讨平台网纹珩磨。
1. 平台网纹的评定参数及定义
平台网纹总体的要求是表面微观结构上有一定数量和一定深度的深沟,
深沟之外的部分是平台,平台网纹就像稻田一样(见图1)。
专注下一代成长,为了孩子。
SUNNEN ML-2000珩磨机,没定,操作,及常见珩磨质量问题对策1芯轴的改制,1对于盲孔Φ0.251+/-.001的加工,油石底部和工具端必须平齐以便能有效地加工盲孔底部,在不影响精度效果的前提下必须去除芯轴上的导向块。
改制前,芯轴前端有导向块改制后,芯轴前端无导向块2改制后的芯轴锲子钩将油石往外涨到最大行程时其前部不应超出芯轴的前端面。
锲子钩超出芯轴前端3 导靴的改制则可以用磨削,车削或挫刀去除不需要的部分。
4确保芯轴上的导靴和油石改制后的长度约为孔长的2/4到3/4之间,就盲孔Φ0.251+/-.001而言油石和导靴的长度定为12到13CM。
2珩磨工具组装,修整和调整3修整芯轴和油石的方法当珩孔出现锥度和表面粗糙度不良时4消除芯轴跳动当珩孔出现锥度和表面粗糙度不良时,当珩磨时明显看到珩磨件跳动时5冲程位置调整当珩孔出现锥度时6珩磨加工中油石超程冲程的长度计算1油石长度计算通孔:油石长度=2/3—3/2孔长对15X474而言我们选择17.5mm的K5NM 系列油石盲孔:油石长度=2/3—3/4 孔长对15X474珩磨而言,我们选择K8NM系列油石改制成13MM2超程计算通孔:超程长=1/2至1/4油石或通孔较短者的长度对15X474而言我们选择6MM盲孔:超程长=在无腰鼓形的情况下尽量短。
3冲程计算通孔:冲程=2倍超程+油石长-孔长对15X474而言我们选择12.81MM盲孔:冲程= 油石长+孔长-油石长对15X474而言我们选择7MM机床参数变化对珩磨的影响最佳主轴转速=17500/零件直径对于15X474的盲孔而言选择1800--2000转每分A) 增加主轴速度1 油石切削能力“变硬“2表面粗糙度增加3如果增加太多会引起油石无法切削(珩磨余量指针不走),油石表面形成沟槽无法保证孔的几何形状精度。
4 网纹角度小B)减小主轴速度1 油石切削能力“变软“2 提高珩磨的表面质量(表面粗糙度降低)3增加油石的自锐性,(不会出现油石打滑珩磨余量指针不走现象注意如果程频率过小有可能出现因珩磨过快无法保证孔的表面精度的和孔的几何形状)4 珩磨噪音减小5网纹角变大6 可以很大的提高工件的几何精度(对纠正孔形非常有利)C)增加冲程频率1 油石切削能力”变软”2提高珩磨的表面质量(表面粗糙度降低)3增加油石的自锐性,(不会出现油石打滑珩磨余量指针不走现象注意如果程频率过大有可能出现因珩磨过快无法保证孔的表面精度的情况)4珩磨噪音减小5网纹角变小6如果增加太多会引起油石无法切削(珩磨余量指针不走),D)减小冲程频率1 油石切削能力“变硬“2表面粗糙度增加3增加油石的自锐情况,(不会出现油石打滑珩磨余量指针不走现象,注意如果程频率过小有可能出现因珩磨过快无法保证孔的表面精度的情况)4 珩磨噪音变大5网纹角度大E)增加油石进给压力1 油石切削能力“变软“2增加油石自锐性,当珩磨余量指针不走时,可以增加油石压力3去除余量变快但是表面精度会变差,4增加工具和机床的磨损5 珩磨工件发热,珩磨噪声变大,6 如果压力太大,油石损耗很快。
缸孔的平台网纹珩磨工艺图1 缸孔珩磨自动线箱体零件的孔加工是复杂与关键并存的工艺,近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了广泛应用,保证了可靠的精度和性能,并且提高了加工效率,降低了成本。
汽车发动机缸体的缸孔与缸盖、活塞组成燃烧室,承受燃气燃烧的爆发压力和冲击,既要耐高温、高压和高温冲击负荷,又要为活塞高速往复运动提供基准,良好定位,准确导向。
因此缸孔与活塞之间,配合间隙要合理,摩擦力要小。
为此,要求缸孔表面粗糙度要低,缸孔尺寸精度要高,形状精度和位置精度要好。
为保证缸孔能满足上述要求,具备必要的性能,迫切需要良好可靠的缸孔精加工手段。
近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了越来越广泛地应用,因此,我们也将平台网纹珩磨用于缸孔精加工。
平台网纹珩磨的优点所谓平台网纹珩磨,就是通过珩磨在缸孔表面形成细小的沟槽,这些沟槽有规律地排列形成网纹,并由专门的珩磨工艺削掉沟槽的尖峰,形成微小的平台。
平台网纹珩磨在缸孔表面形成的这种特殊结构有如下优点:1.微小的平台增加了接触面积,削掉尖峰,消除了表面的早期快速磨损,提高了表面的耐磨性。
2.细小的沟痕形成良好的储油空间,并在缸孔表面形成良好的油膜,降低了缸孔表面与活塞及活塞环的摩擦,因而可以使用低摩擦力的活塞环。
3. 细小的沟痕形成良好的储油空间,减小了机油的散失,进而降低了机油消耗。
4.珩磨后在缸孔表面形成了无数微小的平台,增加了缸孔与活塞及活塞环的接触面积,加大了缸孔表面的支撑度,减少了缸孔的初期磨损,因此减少了缸孔的磨合时间,甚至不用磨合。
平台网纹珩磨工艺平台网纹珩磨的基本工艺为:粗珩→精珩→平台珩。
粗珩:消除前工序的加工痕迹,提高孔的形状精度,降低孔的表面粗糙度,为精珩做好准备。
精珩:更换珩磨油石,进一步提高孔的尺寸精度、形状精度、降低表面粗糙度,在缸孔表面形成均匀的交叉网纹。
平台珩:更换油石,去除沟痕波峰,形成平台表面,提高缸孔表面的支撑率。
发动机缸孔珩磨常见问题及解决方法
邓雄章;陈礼明
【期刊名称】《汽车制造业》
【年(卷),期】2018(000)001
【摘要】实践表明,通过对刀具材料、工艺和参数的调整,可以解决缸孔珩磨过程中的一些常见故障和问题,实施成本低且效果明显,对生产线的操作提供了一种有益的指导方法。
【总页数】4页(P16-19)
【作者】邓雄章;陈礼明
【作者单位】上汽通用五菱汽车股份有限公司;上汽通用五菱汽车股份有限公司【正文语种】中文
【中图分类】U464.131
【相关文献】
1.发动机缸孔珩磨网纹评定及常见网纹问题解析 [J], 商成超;赵兴龙
2.发动机缸体缸孔珩磨圆度影响因素研究 [J], 耿召辉
3.一种发动机缸孔珩磨刀具涨刀装置 [J], 商成超
4.发动机缸孔轮番式珩磨加工工艺的实现 [J], 卢勇; 赵虎
5.发动机缸孔平台网纹珩磨技术研究 [J], 张庆;王力谦;张明明;郭荣辉
因版权原因,仅展示原文概要,查看原文内容请购买。