直线一级倒立摆课程设计论文
- 格式:docx
- 大小:685.34 KB
- 文档页数:23
PID控制的一级倒立摆优化控制问题摘要:直线一级倒立摆,是由沿直线导轨运动的小车以及一端固定于小车的匀质长杆组成的非线性的、不稳定的系统。
本文主要介绍了将一阶倒立摆的数学模型加入PID调节来控制它,从而使其成为稳定的系统,并对整个过程进行了matlab仿真和分析。
关键字:一级倒立摆、PID调节控制器、matlab仿真Abstract:First-order linear inverted pendulum is composed of a trolley, moved along the linear guides, and a homogeneous pole, one end of which is fixed at the car. However, this system is non-linear and unstable.This paper describes the first-order mathematical model of inverted pendulum by adding PID regulator to control it, making it a stable system, and the whole process a matlab simulation and analysis.Keywords: Linear inverted pendulum、PID controller 、MATLAB simulation引言:倒立摆系统是理想的自动控制教学实验设备,使用它能全方位的满足自动控制教学的要求。
许多抽象的控制概念如系统稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆直观的表现出来。
学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。
倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。
摘要倒立摆是进行控制理论研究的典型实验平台,许多抽象的控制理论概念,如系统的稳定性、可观性及可控性等都可以通过该系统直观地表示出来。
倒立摆系统是一个典型的非线性、强耦合、多变量的不稳定系统,在控制研究领域有着代表性的意义,难以用经典的控制理论建立其控制器。
倒立摆作为控制系统的被控对象,许多抽象的控制概念都可以通过它直观的表现出来。
本毕业设计以直线倒立摆为研究对象,对直线一级倒立摆模型控制算法的仿真,并得出了相应的结论。
首先对倒立摆的分类、特性、控制目标、控制方法等以及倒立摆控制研究的发展及其现状进行了分析。
然后利用动力学原理推导了直线一级倒立摆的数学模型,求出其传递函数及状态空间方程。
利用现代控制理论方法,借助MATLAB程序分析了直线倒立摆系统的稳定性、可控性和可观性。
在建立系统模型的基础上,研究了倒立摆系统的控制策略。
对直线一级倒立摆控制采用经典控制方法,设计了常规PID控制器、双路PID控制器及基于倒立摆系统的状态空间方程PID控制器,并利用MATALAB/Simulink软件进行仿真,取得不同的控制效果。
对直线一级倒立摆控制采用现代控制方法,设计了LQR控制器,得出直线一级倒立摆LQR控制仿真图,通过改变Simulink的LQR模块及状态空间模块中的参数得到最好的控制效果。
关键词:倒立摆;PID控制;最优控制;系统仿真;SIMULINKAbstractThe inverted pendulum is put to go on in the typical experiment platform which controls the theoretical research, a lot of abstract control theory concepts,such as instance systematic stability, considerable and controllability,etc. can all show ocularly thought this system.The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system. Control research fieldrepresentative meaning, set up his controller with the classical control theory while being difficult. The handstand is put as the target of accusing of of the control system, a lot of abstract control concepts can all show ocularly through it.Graduation project this wave, for research object, wave model emulation to control algorithm with straight line handstand to straight line first class handstand have drawn the corresponding conclusionhas made the modelings, control algorithm simulations and experiments on the 1-stage inverted pendulum, and has drawn the corresponding conclusion.At first to classification, characteristic, control goal that handstand wave, control method,etc. and handstand wave development and current situation studied to control analyze. Then utilize the dynamics principle to derive the mathematical model that the straight line first class handstand puts, ask it out and transmit the function and state space equation. Utilize the modern control theory.The control stategies of inverted pendulum system have been studied on the basis of building system model. By taking classic control methods to the linear 1-stage inverted pendulum, designed have been the conventional PID controller and double closed loop controller and the PID controller based on state space equation of inverted pendulum system. And by making MATALAB/Simulink simulation, different effects have been acquired By taking modern control methods to the linear1-stage inverted pendulum, the LRQ controller has been devised, the LRQ control simulation figure of the linear 1-stage inverted pendulum has been obtained. And by altering the parameters of Simulink LRQ model and state space model, the best control result has been achieved.Key words: Stand upside down swaying; PID controls; Optimal control; System simulates; SIMULINK目录摘要 (I)Abstract (II)目录............................................................................................................................................... I II 第一章绪论.. (1)1.1 倒立摆的简单分析 (1)1.2 倒立摆的分类 (1)1.3倒立摆的特性 (2)1.4倒立摆的控制方法 (3)1.5国内外对于倒立摆的研究现状 (3)1.6本章小结 (5)第二章直线倒立摆数学模型的建立 (7)2.1 直线一级倒立摆系统的数学模型 (7)2.1.1 直线一级倒立摆系统运动方程的推导 (7)2.1.2直线一级倒立摆系统分析 (11)2.2本章小结 (15)第三章直线一级倒立摆系统PID控制与仿真 (16)3.1PID控制系统设计原理 (16)3.2 PID参数调整 (17)3.3 直线一级倒立摆PID控制器设计 (18)3.3.1 直线一级倒立摆摆杆角度控制 (18)3.3.2直线一级倒立摆小车位置控制 (19)3.4直线一级倒立摆PID控制算法仿真 (20)3.4.1直线一级倒立摆杆角度控制算法仿真 (20)3.4.2直线一级倒立摆小车位置控制算法仿真 (22)3.5直线一级倒立摆双闭环PID控制算法仿真 (24)3.6本章小结 (26)第四章直线倒立摆系统LQR控制与仿真 (28)4.1线性二次型最优控制LQR控制原理简介 (28)4.2倒立摆LQR控制器的设计 (29)4.3直线一级倒立摆LQR控制算法仿真 (31)4.4 本章小结 (35)第五章总结与展望 (36)参考文献 (37)致谢 (38)第一章绪论1.1 倒立摆的简单分析倒立摆是处于倒置不稳定状态、通过人为控制使其处于动态平衡的一种摆,是一个复杂的快速、非线性、多变量、强祸合、自然不稳定系统,是重心在上、支点在下控制问题的抽象。
摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131姓名:尹润丰学号: 2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立............................ - 1 -1.1问题描述................................................................. - 1 -1.2状态空间表达式的建立..................................................... - 1 -1.2.1直线一级倒立摆的数学模型........................................... - 1 -1.2.2 直线一级倒立摆系统的状态方程 ...................................... - 5 -2.应用MATLAB分析系统性能.................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析......................................... - 6 -2.2 系统可控性分析.......................................................... - 7 -2.3 系统可观测性分析........................................................ - 8 -3. 应用matlab进行综合设计................................. - 8 -3.1状态反馈原理............................................................. - 8 -3.2全维状态反馈观测器和simulink仿真........................................ - 9 -4.应用Matlab进行系统最优控制设计......................... - 11 -5.总结.................................................... - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
线性系统倒立摆实验(5篇材料)第一篇:线性系统倒立摆实验直线倒立摆控制及一级正摆位移和角度控制一、实验目的(1)在Matlab Simulink环境下实现控制伺服电机;(2)完成直线倒立摆建模、仿真与分析;(3)通过控制器设计使倒立摆系统稳定运行(摆角保持零度附近):二、实验内容及要求(1)状态空间极点配置控制实验(一组极点为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的期望极点组。
(2)线性二次最优控制LQR 控制实验(R,Q选择为书上指定,任选另一组,但保证控制效果要好于前者)具体记录要求:在稳定后(先截一张图),叠加一扰动(仅角度扰动),记录消除扰动的过程(再截一张图),同时记录你所选择的R,Q取值。
(3)一级正摆位移和角度控制借助于正摆实验平台,构思、设计控制策略和控制算法,并编程实现,通过实验设备将物体快速、准确地运输到指定的位置,且在吊运的整个过程(起吊,运输,到达目的地)保持较小的摆动角。
要求:系统启动后,在当前位置给正摆施加一角度扰动,当平衡(摆角为零)后,让小车直线运行30厘米,并快速保证平衡(摆角为零)。
三、实验过程1.实验方法(1)Matlab Simulink仿真环境下精确控制电机在MATLAB Simulink仿真环境中,建立模型,然后进行仿真并分析结果。
(2)直线倒立摆建模、仿真与分析利用牛顿力学进行受力分析,然后建立直线一级倒立摆系统的数学模型;进行仿真分析。
(3)状态空间极点配置控制实验进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开“Inverted PendulumLinear Inverted PendulumLinear 1-Stage IP Experiment PolesExperiments”中的“Poles Control M File1”。
直线一级倒立摆控制方法研究毕业论文目录前言 (1)第1章倒立摆系统 (2)1.1 倒立摆的简介 (2)1.2 倒立摆的分类 (3)1.3 倒立摆的特性 (5)1.4 控制器的设计方法 (6)1.5 倒立摆系统研究的背景及意义 (6)1.6 直线倒立摆控制系统硬件框图 (8)第2章倒立摆的数学模型 (9)2.1 数学模型概述 (9)2.2 拉格朗日建模法 (9)2.3 倒立摆系统参数 (11)2.4 实际数学模型 (12)第3章MATLAB工具软件 (13)3.1 MATLAB简介 (13)3.2 SIMULINK仿真 (14)3.3 SIMULINK仿真建模方法 (15)第4章PID控制 (17)4.1 PID控制简述 (17)4.2 国内外的研究现状和发展趋势 (18)4.3 PID控制器设计 (20)4.4 PID控制器参数的整定 (21)第5章直线一级倒立摆的PID控制 (22)5.1 直线一级倒立摆的PID控制Simulink仿真 (22)5.2 直线一级倒立摆的PID仿真程序 (25)5.3 直线一级倒立摆的PID实时控制 (26)第6章直线一级倒立摆LQR控制 (29)6.1 线性二次最优控制LQR基本原理及分析 (29)6.2 LQR控制参数调节及仿真 (30)6.3 直线一级倒立摆LQR控制simulink仿真 (32)6.4 直线一级倒立摆LQR控制 (34)结论 (37)谢辞 (38)参考文献 (39)附录 (41)外文资料翻译 (45)MATLAB (45)MATLAB简介 (51)前言倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备]2[。
直线倒立摆论文**: ***班级:13自动化一班学号:***********日期:2015.05.22摘要倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
第一章绪论1.1 引言杂技顶杆表演之所以为人们熟悉,不仅是其技术的精湛引人入胜,更重要的是其物理本质与控制系统的稳定性密切相关。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控制对象,通过控制手段可使之具有良好的稳定性。
由此不难看出杂技演员顶杆表演的物理机制可简化为一个倒置的倒立摆装置,也就是人们常称的倒立摆或一级倒立摆系统。
早在上世纪60年代人们就开始了对倒立摆系统的研究。
倒立摆作为一个典型的不稳定、严重非线性的例证,用来检验控制方法对不稳定、非线性和快速性系统的控制能力。
而用不同的控制方法控制不同类型的倒立摆受到世界各国许多科学家的重视,成为目前具有挑战性的课题之一。
目录一、倒立摆的介绍 (2)1、简介 (2)2、分类 (2)二、直线一级倒立摆的组成 (4)1、电控箱 (5)2、交流伺服电机及其工作原理 (5)3、编码器及其工作原理 (6)4、控制卡 (7)三、倒立摆的建模 (7)四、倒立摆系统控制器的设计 (11)1、频率响应分析 (11)2、频率响应设计与仿真 (13)五、设计总结 (22)六、参考资料 (23)一、倒立摆的介绍1、简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
2、分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
环形倒立摆系列环形倒立摆是在圆周运动模块上装有摆体组件,圆周运动模块有一个自由度,可以围绕齿轮中心做圆周运动,在运动手臂末端装有摆体组件,根据摆体组件的级数和串连或并联的方式,可以组成很多形式的倒立摆。
平面倒立摆系列平面倒立摆是在可以做平面运动的运动模块上装有摆杆组件,平面运动模块主要有两类:一类是XY运动平台,另一类是两自由度 SCARA 机械臂;摆体组件也有一级、二级、三级和四级很多种。
复合倒立摆系列复合倒立摆为一类新型倒立摆,由运动本体和摆杆组件组成,其运动本体可以很方便的调整成三种模式,一是2)中所述的环形倒立摆,还可以把本体翻转 90 度,连杆竖直向下和竖直向上组成托摆和顶摆两种形式的倒立摆。
按倒立摆的级数来分:有一级倒立摆、两级倒立摆、三级倒立摆和四级倒立摆,一级倒立摆常用于控制理论的基础实验,多级倒立摆常用于控制算法的研究,倒立摆的级数越高,其控制难度更大,目前,可以实现的倒立摆控制最高为四级倒立摆。
二、直线一级倒立摆系统的组成直线一级倒立摆是最基础和最简单的倒立摆,也是这次创新实践课程的主要研究对象,它由由直线运动模块和一级摆体组件组成,是最常见的摆之一,如图1所示:图1 倒立摆实物图系统图组成图如下:图2 一级直线倒立摆系统组成图示倒立摆的工作方式为小车由电机通过同步带驱动,在滑杆上来回运动,保持摆杆平衡,电机编码器和角编码器向运动卡反馈小车位置和摆杆位置(线位移和角位移)1、电控箱电控箱内安装有如下部件:交流伺服驱动器I/O接口板开关电源开关、指示灯等电气元件2、交流伺服电机及其工作原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差 90 °电角度的绕组,即励磁绕组和控制绕组。
运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。
转子的结构形式笼型转子和空心杯型转子两种。
笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。
其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。
空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。
外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。
空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子之间。
杯子底部固定于转轴上,杯臂薄而轻,厚度一般在 0.2 —0.8mm ,因而转动惯量小,动作快且灵敏。
交流伺服电动机的工作原理和单相异步电动机相似, LL 是有固定电压励磁的励磁绕组, L K是有伺服放大器供电的控制绕组,两相绕组在空间相差 90 °电角度。
如果 IL 与 Ik 的相位差为 90 °,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。
与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。
旋转磁场与转子导体相对切割,在转子中产生感应电流。
转子电流与旋转磁场相互作用产生转矩,使转子旋转。
如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。
电机的工作状态越不对称,总电磁转矩就越小,当除去控制绕组上信号电压以后,电动机立即停止转动。
这是交流伺服电动机在运行上与普通异步电动机的区别。
交流伺服电机有以下三种转速控制方式:( 1 )幅值控制控制电流与励磁电流的相位差保持 90 °不变,改变控制电压的大小。
( 2 )相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。
( 3 )幅值—相位控制同时改变控制电压幅值和相位。
交流伺服电动机转轴的转向随控制电压相位的反相而改变。
下图为交流伺服电动机原理图:图3 交流伺服电动机原理图3、编码器及其工作原理旋转编码器是一种角位移传感器,它分为光电式、接触式和电磁感应式三种,其中光电式脉冲编码器是闭环控制系统中最常用的位置传感器。
图4 光电编码器原理示意图旋转编码器有增量编码器和绝对编码器两种,图 2-1 为光电式增量编码器示意图,它由发光元件、光电码盘、光敏元件和信号处理电路组成。
当码盘随工作轴一起转动时,光源透过光电码盘上的光栏板形成忽明忽暗的光信号,光敏元件把光信号转换成电信号,然后通过信号处理电路的整形、放大、分频、记数、译码后输出。
为了测量出转向,使光栏板的两个狭缝比码盘两个狭缝距离小1/4 节距,这样两个光敏元件的输出信号就相差π/2 相位,将输出信号送入鉴向电路,即可判断码盘的旋转方向。
光电式增量编码器的测量精度取决于它所能分辨的最小角度α(分辨角、分辨率),而这与码盘圆周内所分狭缝的线数有关。
360a=n其中n——编码器线数。
由于光电式脉冲编码盘每转过一个分辨角就发出一个脉冲信号,因此,根据脉冲数目可得出工作轴的回转角度,由传动比换算出直线位移距离;根据脉冲频率可得工作轴的转速;根据光栏板上两条狭缝中信号的相位先后,可判断光电码盘的正、反转。
绝对编码器通过与位数相对应的发光二极管和光敏二极管对输出的二进制码来检测旋转角度。
角度换算:对于线数为n的编码器,设信号采集卡倍频数为m,则有角度换算关系为:式中f——为编码器轴转角;N ——编码器读数对于电机编码器,在倒立摆使用中需要把编码器读数转化为小车的水平位置,以下转换关系:式中l ——小车位移;f——同步带轮直径4、控制卡倒立摆使用了由固高科技提供的控制卡,该控制卡的特点是输出类型可以是模拟量或者脉冲量,它还采用了PID滤波器,外加速度和加速度前馈。
通过调节,设置合适的参数,可提高控制系统的速度和精度。
三、倒立摆的建模由于状态反馈要求被控系统是一个线性系统,而倒立摆系统本身是一个非线性的系统,因此用状态反馈来控制倒立摆系统首先要将这个非线性系统近似成为一个线性系统。
可用牛顿力学方法来建模:在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图2所示:图2直线一级倒立摆模型我们不妨做以下假设:M 小车质量;m 摆杆质量;b 小车摩擦系数;l 摆杆转动轴心到杆质心的长度;I 摆杆惯量;F 加在小车上的力;x 小车位置;φ摆杆与垂直向上方向的夹角;θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)下图是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作力的水平和垂直方向的分量。
注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图3示,图示方向为矢量正方向。
图3及摆杆受力分析分析小车水平方向所受的合力,可以得到以下方程:由摆杆水平方向的受力进行分析可以得到下面等式:22(sin)dn m x ldt θ=+(3-1)即:2...cos sin n mx ml ml θθθθ=+- (3-2) 把这个等式代入式(3-1)中,就得到系统的第一个运动方程:....2()cos sin M m x b ml ml F x θθθθ+++-= (3-3) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: 22(cos )d p mg m l dtθ-= (3-4)...2sin cos p mg ml ml θθθθ-=-- (3-5)力矩平衡方程如下:..sin cos pl Nl l θθθ--= (3-6)注意:此方程中力矩的方向,由于θ =π +φ,cos φ = -cos θ,sin φ = -sin θ ,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:..2()sin cos I ml mgl mlx θθθ++=- (3-7)设θ =π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧d θ 2度)相比很小,即φ<<1,则可以进行近似处理:2cos 1,sin ,()0d dtθθθϕ=-=-= (3-8)用,来代表被控对象的输入力F ,线性化后两个运动方程如下:()M m x bx ml u φ++-= (3-9)2()I ml mgl mlxφφ+-=(3-10)注意:推导传递函数时假设初始条件为0。
由于输出为角度φ,求解方程组的第一个方程,可以得到: 22()()[]()I ml g x s s ml sφ+=- (3-11)或222()()()s mls X S I ml s mgl φ=+- (3-12) 如果令v = x ,则有: 22()()()s ml V s I ml s mglφ=+- (3-13)把上式代入方程组的第二个方程,得到: 22222()()(M+m)[-](s)s +b[+](s)s-ml ()=U(s)l ml g l ml gs s ml s ml s φφφ++ (3-14) 整理后得到传递函数:22432()()()()mls s qb I ml M m mgl bmgl U s s s s sq q q φ=+++--(3-15) 其中22[()()()]q M m I ml ml =++-(3-16) 设系统状态空间方程为:.x AX Bu y CX Du=+=+由(9)方程为:..2()I ml mgl mlx φφ+-=(3-17) 对于质量均匀分布的摆杆有: 213I ml =于是可以得到: ..221()3ml ml mgl mlx φφ+-= (3-18)化简得到: ..3344gx l l φφ=+(3-19)实际系统的模型参数如下:M 小车质量 1.096 Kgm 摆杆质量 0.109 Kgb 小车摩擦系数 0 .1N/m/secl 摆杆转动轴心到杆质心的长度 0.2 5mI 摆杆惯量 0.0034 kg*m*m把上述参数代入,可以得到系统的实际模型。